10 resultados para Integrable Quantum-systems
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta- re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise assisted transport e di antenna fononica sostiene che la presenza di un adeguato livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi- librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica numerica che per prima ha predetto la rigenerazione della coerenza all’interno di questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D, tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.
Resumo:
Oggigiorno il concetto di informazione è diventato cruciale in fisica, pertanto, siccome la migliore teoria che abbiamo per compiere predizioni riguardo l'universo è la meccanica quantistica, assume una particolare importanza lo sviluppo di una versione quantistica della teoria dell'informazione. Questa centralità è confermata dal fatto che i buchi neri hanno entropia. Per questo motivo, in questo lavoro sono presentati elementi di teoria dell'informazione quantistica e della comunicazione quantistica e alcuni sono illustrati riferendosi a modelli quantistici altamente idealizzati della meccanica di buco nero. In particolare, nel primo capitolo sono forniti tutti gli strumenti quanto-meccanici per la teoria dell'informazione e della comunicazione quantistica. Successivamente, viene affrontata la teoria dell'informazione quantistica e viene trovato il limite di Bekenstein alla quantità di informazione chiudibile entro una qualunque regione spaziale. Tale questione viene trattata utilizzando un modello quantistico idealizzato della meccanica di buco nero supportato dalla termodinamica. Nell'ultimo capitolo, viene esaminato il problema di trovare un tasso raggiungibile per la comunicazione quantistica facendo nuovamente uso di un modello quantistico idealizzato di un buco nero, al fine di illustrare elementi della teoria. Infine, un breve sommario della fisica dei buchi neri è fornito in appendice.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.
Resumo:
The study of ultra-cold atomic gases is one of the most active field in contemporary physics. The main motivation for the interest in this field consists in the possibility to use ultracold gases to simulate in a controlled way quantum many-body systems of relevance to other fields of physics, or to create novel quantum systems with unusual physical properties. An example of the latter are Bose-Fermi mixtures with a tunable pairing interaction between bosons and fermions. In this work, we study with many-body diagrammatic methods the properties of this kind of mixture in two spatial dimensions, extending previous work for three dimensional Bose-Fermi mixtures. At zero temperature, we focus specifically on the competition between boson condensation and the pairing of bosons and fermions into molecules. By a numerical solution of the main equations resulting by our many-body diagrammatic formalism, we calculate and present results for several thermodynamic quantities of interest. Differences and similarities between the two-dimensional and three-dimensional cases are pointed out. Finally, our new results are applied to discuss a recent proposal for creating a p-wave superfluid in Bose-Fermi mixtures with the fermionic molecules which form for sufficiently strong Bose-Fermi attraction.
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
Resumo:
The scalar Schrödinger equation models the probability density distribution for a particle to be found in a point x given a certain potential V(x) forming a well with respect to a fixed energy level E_0. Formally two real inversion points a,b exist such that V(a)=V(b)=E_0, V(x)<0 in (a,b) and V(x)>0 for xb. Following the work made by D.Yafaev and performing a WKB approximation we obtain solutions defined on specific intervals. The aim of the first part of the thesis is to find a condition on E, which belongs to a neighbourhood of E_0, such that it is an eigenvalue of the Schrödinger operator, obtaining in this way global and linear dependent solutions in L2. In quantum mechanics this condition is known as Bohr-Sommerfeld quantization. In the second part we define a Schrödinger operator referred to two potential wells and we study the quantization conditions on E in order to have a global solution in L2xL2 with respect to the mutual position of the potentials. In particular their wells can be disjoint,can have an intersection, can be included one into the other and can have a single point intersection. For these cases we refer to the works of A.Martinez, S. Fujiié, T. Watanabe, S. Ashida.
Resumo:
In the last few years there has been a great development of techniques like quantum computers and quantum communication systems, due to their huge potentialities and the growing number of applications. However, physical qubits experience a lot of nonidealities, like measurement errors and decoherence, that generate failures in the quantum computation. This work shows how it is possible to exploit concepts from classical information in order to realize quantum error-correcting codes, adding some redundancy qubits. In particular, the threshold theorem states that it is possible to lower the percentage of failures in the decoding at will, if the physical error rate is below a given accuracy threshold. The focus will be on codes belonging to the family of the topological codes, like toric, planar and XZZX surface codes. Firstly, they will be compared from a theoretical point of view, in order to show their advantages and disadvantages. The algorithms behind the minimum perfect matching decoder, the most popular for such codes, will be presented. The last section will be dedicated to the analysis of the performances of these topological codes with different error channel models, showing interesting results. In particular, while the error correction capability of surface codes decreases in presence of biased errors, XZZX codes own some intrinsic symmetries that allow them to improve their performances if one kind of error occurs more frequently than the others.
Resumo:
Ultracold gases provide an ideal platform for quantum simulations of many-body systems. Here we are interested in a particular system which has been the focus of most experimental and theoretical works on ultracold fermionic gases: the unitary Fermi gas. In this work we study with Quantum Monte Carlo simulations a two-component gas of fermionic atoms at zero temperature in the unitary regime. Specifically, we are interested in studying how the effective masses for the quasi-particles of the two components of the Fermi liquid evolve as the polarization is progressively reduced from full to lower values. A recent theoretical work, based on alternative diagrammatic methods, has indeed suggested that such effective masses should diverge at a critical polarization. To independently verify such predictions, we perform Variational Monte Carlo (VMC) calculations of the energy based on Jastrow-Slater wavefunctions after adding or subtracting a particle with a given momentum to a full Fermi sphere. In this way, we determine the quasi-particle dispersions, from which we extract the effective masses for different polarizations. The resulting effective masses turn out to be quite close to the non-interacting values, even though some evidence of an increase for the effective mass of the minority component appears close to the predicted value for the critical polarization. Preliminary results obtained for the majority component with the Fixed-node Diffusion Monte Carlo (DMC) method seem to indicate that DMC could lead to an increase of the effective masses in comparison with the VMC results. Finally, we point out further improvements of the trial wave-function and boundary conditions that would be necessary in future simulations to draw definite conclusions on the effective masses of the polarized unitary Fermi gas.