1 resultado para Insular cortex
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (27)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (69)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (86)
- Boston University Digital Common (11)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (53)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (12)
- Cochin University of Science & Technology (CUSAT), India (7)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Howard @ Howard University | Howard University Research (1)
- DigitalCommons@The Texas Medical Center (12)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (94)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (71)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (4)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universita di Parma (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (8)
- Université de Montréal (6)
- Université de Montréal, Canada (35)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (45)
- University of Queensland eSpace - Australia (54)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
In this paper we study the notion of degree forsubmanifolds embedded in an equiregular sub-Riemannian manifold and we provide the definition of their associated area functional. In this setting we prove that the Hausdorff dimension of a submanifold coincides with its degree, as stated by Gromov. Using these general definitions we compute the first variation for surfaces embedded in low dimensional manifolds and we obtain the partial differential equation associated to minimal surfaces. These minimal surfaces have several applications in the neurogeometry of the visual cortex.