4 resultados para Inhibition technique of Jones
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The concern of this work is to present the characterization of blue emitting GaN-based LED structures by means of Atomic Force Microscopy. Here we show a comparison among the samples with different dislocation densities, in order to understand how the dislocations can affect the surface morphology. First of all we have described the current state of art of the LEDs in the present market. Thereafterwards we have mentioned in detail about the growth technique of LED structures and the methodology of the characterization employed in our thesis. Finally, we have presented the details of the results obtained on our samples studied, followed by discussions and conclusions. L'obiettivo di questa tesi é quello di presentare la caratterizzazione mediante Microscopia a Forza Atomica di strutture di LED a emissione di luce blu a base di nitruro di gallio (GaN). Viene presentato un confronto tra campioni con differente densità di dislocazioni, allo scopo di comprendere in che modo la presenza di dislocazioni influisce sulla morfologia della superficie. Innanzitutto, viene descritto il presente stato dell'arte dei LED. Successivamente, sono forniti i dettagli riguardanti la tecnica di crescita delle strutture dei LED e il metodo di caratterizzazione adottato. Infine, vengono mostrati e discussi i risultati ottenuti dallo studio dei campioni, seguiti dalle conclusioni.
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.
Resumo:
Nowadays renewable energies are a hot research topic, and the goal is to improve cell efficiency and reduce production costs, aiming to make the use of photovoltaics increasingly widespread and convenient. Monocrystalline silicon solar cells are leaders in the photovoltaic market. However, market-established cutting techniques produce a consistent amount of material waste when cutting ingots into wafers. The“Stress-induced LIft-Off Method” (SLIM) is emerging in recent years as an alternative, more sustainable separation technique, which reduces material loss and can lead to obtaining increasingly thinner wafers, further reducing the required amount of silicon. This thesis presents the micro-characterization of the separated wafers with the SLIM technique. The wafers were obtained with a two-step procedure. First, a layer of defects was induced in the silicon using ultra-short medium-infrared laser pulses. Then, the material was deposited on one of the sides and induced stress in the silicon, such as to further weaken it. In this way, only rapid cooling is required for detachment to occur. The obtained results indicate that the SLIM-cut technique halves the minority carriers’ lifetime. There is no amorphization, crystal disorder or high-pressure phases. However, changes in the Raman spectra suggest that tensile stress may have been produced on these surface layers by the separation process. The AFM topography highlights surface irregularities, which may be removed with a polishing step. The surface also shows laser-modified regions, which are evident in SEM images, but not in AFM topographies, suggesting a charging effect due to electron bombardment. Lastly, the electrical characterization by conductive AFM lacks any changes in the conductive behaviour of the material where the laser-modified areas should be located. In conclusion, these preliminary results are promising to carry out a systematic characterization of this technique of this innovative SLIM technique.
Resumo:
This thesis work aims to produce and test multilayer electrodes for their use as photocathode in a PEC device. The electrode developed is based on CIGS, a I-III-VI2 semiconductor material composed of copper (Cu), indium (In), Gallium (Ga) and selenium (Se). It has a bandgap in the range of 1.0-2.4 eV and an absorption coefficient of about 105cm−1, which makes it a promising photocathode for PEC water splitting. The idea of our multilayer electrode is to deposit a thin layer of CdS on top of CIGS to form a solid-state p–n junction and lead to more efficient charge separation. In addition another thin layer of AZO (Aluminum doped zinc oxide) is deposit on top of CdS since it would form a better alignment between the AZO/CdS/CIGS interfaces, which would help to drive the charge transport further and minimize charge recombination. Finally, a TiO2 layer on top of the electrodes is used as protective layer during the H2 evolution. FTO (Fluorine doped tin oxide) and Molybdenum are used as back-contact. We used the technique of RF magnetron sputtering to deposit the thin layers of material. The structural characterization performed by XDR measurement confirm a polycrystalline chalcopyrite structural with a preferential orientation along the (112) direction for the CIGS. From linear fit of the Tauc plot, we get an energy gap of about 1.16 eV. In addition, from a four points measurements, we get a resistivity of 0.26 Ωcm. We performed an electrochemical characterization in cell of our electrodes. The results show that our samples have a good stability but produce a photocurrent of the order of μA, three orders of magnitude smaller than our targets. The EIS analysis confirm a significant depletion of the species in front of the electrode causing a lower conversion of the species and less current flows.