4 resultados para Infinitesimal symmetries
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The thesis presents a probabilistic approach to the theory of semigroups of operators, with particular attention to the Markov and Feller semigroups. The first goal of this work is the proof of the fundamental Feynman-Kac formula, which gives the solution of certain parabolic Cauchy problems, in terms of the expected value of the initial condition computed at the associated stochastic diffusion processes. The second target is the characterization of the principal eigenvalue of the generator of a semigroup with Markov transition probability function and of second order elliptic operators with real coefficients not necessarily self-adjoint. The thesis is divided into three chapters. In the first chapter we study the Brownian motion and some of its main properties, the stochastic processes, the stochastic integral and the Itô formula in order to finally arrive, in the last section, at the proof of the Feynman-Kac formula. The second chapter is devoted to the probabilistic approach to the semigroups theory and it is here that we introduce Markov and Feller semigroups. Special emphasis is given to the Feller semigroup associated with the Brownian motion. The third and last chapter is divided into two sections. In the first one we present the abstract characterization of the principal eigenvalue of the infinitesimal generator of a semigroup of operators acting on continuous functions over a compact metric space. In the second section this approach is used to study the principal eigenvalue of elliptic partial differential operators with real coefficients. At the end, in the appendix, we gather some of the technical results used in the thesis in more details. Appendix A is devoted to the Sion minimax theorem, while in appendix B we prove the Chernoff product formula for not necessarily self-adjoint operators.
Resumo:
This work is focused on axions and axion like particles (ALPs) and their possible relation with the 3.55 keV photon line detected, in recent years, from galaxy clusters and other astrophysical objects. We focus on axions that come from string compactification and we study the vacuum structure of the resulting low energy 4D N=1 supergravity effective field theory. We then provide a model which might explain the 3.55 keV line through the following processes. A 7.1 keV dark matter axion decays in two light axions, which, in turn, are transformed into photons thanks to the Primakoff effect and the existence of a kinetic mixing between two U(1)s gauge symmetries belonging respectively to the hidden and the visible sector. We present two models, the first one gives an outcome inconsistent with experimental data, while the second can yield the desired result.
Resumo:
A broad sector of literature focuses on the relationship between fluid dynamics and gravitational systems. This thesis presents results that suggest the existence of a new kind of fluid/gravity duality not based on the holographic principle. The goal is to provide tools that allow us to systematically unearth hidden symmetries for reduced models of cosmology. The focus is on the field space of these models, i.e. the superspace. In fact, conformal isometries of the supermetric leave geodesics in the field space unaltered; this leads to symmetries of the models. An innovative aspect is the use of the Eisenhart-Duval’s lift. Using this method, systems constrained by a potential can be treated as free ones. Moreover, charges explicitly dependent on time, i.e. dynamical, can be found. A detailed analysis is carried out on three basic models of homogenous cosmology: i) flat Friedmann-Lemaître-Robertson-Walker’s isotropic universe filled with a massless scalar field; ii) Schwarzschild’s black hole mechanics and its extension to vacuum (A)dS gravity; iii) Bianchi’s anisotropic type I universe with a massless scalar field. The results show the presence of a hidden Schrödinger’s symmetry which, being intrinsic to both Navier-Stokes’ and Schrödinger’s equations, indicates a correspondence between cosmology and hydrodynamics. Furthermore, the central extension of this algebra explicitly relates two concepts. The first is the number of particles coming from the fluid picture; while the second is the ratio between the IR and UV cutoffs that weighs how much a theory has of “classical” over “quantum”. This suggests a spacetime that emerges from an underlying world which is described by quantum building blocks. These quanta statistically conspire to appear as gravitational phenomena from a macroscopic point of view.
Resumo:
In the last few years there has been a great development of techniques like quantum computers and quantum communication systems, due to their huge potentialities and the growing number of applications. However, physical qubits experience a lot of nonidealities, like measurement errors and decoherence, that generate failures in the quantum computation. This work shows how it is possible to exploit concepts from classical information in order to realize quantum error-correcting codes, adding some redundancy qubits. In particular, the threshold theorem states that it is possible to lower the percentage of failures in the decoding at will, if the physical error rate is below a given accuracy threshold. The focus will be on codes belonging to the family of the topological codes, like toric, planar and XZZX surface codes. Firstly, they will be compared from a theoretical point of view, in order to show their advantages and disadvantages. The algorithms behind the minimum perfect matching decoder, the most popular for such codes, will be presented. The last section will be dedicated to the analysis of the performances of these topological codes with different error channel models, showing interesting results. In particular, while the error correction capability of surface codes decreases in presence of biased errors, XZZX codes own some intrinsic symmetries that allow them to improve their performances if one kind of error occurs more frequently than the others.