6 resultados para Industrial process

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural hazards affecting industrial installations could directly or indirectly cause an accident or series of accidents with serious consequences for the environment and for human health. Accidents initiated by a natural hazard or disaster which result in the release of hazardous materials are commonly referred to as Natech (Natural Hazard Triggering a Technological Disaster) accidents. The conditions brought about by these kinds of events are particularly problematic, the presence of the natural event increases the probability of exposition and causes consequences more serious than standard technological accidents. Despite a growing body of research and more stringent regulations for the design and operation of industrial activities, Natech accidents remain a threat. This is partly due to the absence of data and dedicated risk-assessment methodologies and tools. Even the Seveso Directives for the control of risks due to major accident hazards do not include any specific impositions regarding the management of Natech risks in the process industries. Among the few available tools there is the European Standard EN 62305, which addresses generic industrial sites, requiring to take into account the possibility of lightning and to select the appropriate protection measures. Since it is intended for generic industrial installations, this tool set the requirements for the design, the construction and the modification of structures, and is thus mainly oriented towards conventional civil building. A first purpose of this project is to study the effects and the consequences on industrial sites of lightning, which is the most common adverse natural phenomenon in Europe. Lightning is the cause of several industrial accidents initiated by natural causes. The industrial sectors most susceptible to accidents triggered by lightning is the petrochemical one, due to the presence of atmospheric tanks (especially floating roof tanks) containing flammable vapors which could be easily ignited by a lightning strike or by lightning secondary effects (as electrostatic and electromagnetic pulses or ground currents). A second purpose of this work is to implement the procedure proposed by the European Standard on a specific kind of industrial plant, i.e. on a chemical factory, in order to highlight the critical aspects of this implementation. A case-study plant handling flammable liquids was selected. The application of the European Standard allowed to estimate the incidence of lightning activity on the total value of the default release frequency suggested by guidelines for atmospheric storage tanks. Though it has become evident that the European Standard does not introduce any parameters explicitly pointing out the amount of dangerous substances which could be ignited or released. Furthermore the parameters that are proposed to describe the characteristics of the structures potentially subjected to lightning strikes are insufficient to take into account the specific features of different chemical equipment commonly present in chemical plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the metal industry, and more specifically in the forging one, scrap material is a crucial issue and reducing it would be an important goal to reach. Not only would this help the companies to be more environmentally friendly and more sustainable, but it also would reduce the use of energy and lower costs. At the same time, the techniques for Industry 4.0 and the advancements in Artificial Intelligence (AI), especially in the field of Deep Reinforcement Learning (DRL), may have an important role in helping to achieve this objective. This document presents the thesis work, a contribution to the SmartForge project, that was performed during a semester abroad at Karlstad University (Sweden). This project aims at solving the aforementioned problem with a business case of the company Bharat Forge Kilsta, located in Karlskoga (Sweden). The thesis work includes the design and later development of an event-driven architecture with microservices, to support the processing of data coming from sensors set up in the company's industrial plant, and eventually the implementation of an algorithm with DRL techniques to control the electrical power to use in it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis, a life cycle analysis (LCA) of a biofuel cell designed by a team from the University of Bologna was done. The purpose of this study is to investigate the possible environmental impacts of the production and use of the cell and a possible optimization for an industrial scale-up. To do so, a first part of the paper was devoted to studying the present literature on biomass, and fuel cell treatments and then LCA studies on them. The experimental part presents the work done to create the Life Cycle Inventory and Life Cycle Impact Assessment. Several alternative scenarios were created to study process optimization. Reagents and energy supply were changed. To examine whether this technology can be competitive, a comparison was made with some biofuel cell use scenarios with traditional biomass treatment technologies. The result of this study is that this technology is promising from an environmental point of view in case it is possible to recover nutrients in output, without excessive energy consumption, and to minimize the use of energy used to prepare the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industry 4.0 refers to the 4th industrial revolution and at its bases, we can see the digitalization and the automation of the assembly line. The whole production process has improved and evolved thanks to the advances made in networking, and AI studies, which include of course machine learning, cloud computing, IoT, and other technologies that are finally being implemented into the industrial scenario. All these technologies have in common a need for faster, more secure, robust, and reliable communication. One of the many solutions for these demands is the use of mobile communication technologies in the industrial environment, but which technology is better suited for these demands? Of course, the answer isn’t as simple as it seems. The 4th industrial revolution has a never seen incomparable potential with respect to the previous ones, every factory, enterprise, or company have different network demands, and even in each of these infrastructures, the demands may diversify by sector, or by application. For example, in the health care industry, there may be e a need for increased bandwidth for the analysis of high-definition videos or, faster speeds in order to have analytics occur in real-time, and again another application might be higher security and reliability to protect patients’ data. As seen above, choosing the right technology for the right environment and application, considers many things, and the ones just stated are but a speck of dust with respect to the overall picture. In this thesis, we will investigate a comparison between the use of two of the available technologies in use for the industrial environment: Wi-Fi 6 and 5G Private Networks in the specific case of a steel factory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of product presentation in the marketing industry is well known. Labels are crucial for providing information to the buyer, but at a modest additional expense, a beautiful label with exquisite embellishments may also give the goods a sensation of high quality and elegance. Enhancing the capabilities of stamping machines is required to keep up with the increasing velocity of the production lines in the modern manufacturing industry and to offer new opportunities for customization. It’s in this context of improvements and refinements that this work takes place. The thesis was developed during an internship at Studio D, the firm that designs the mechanics of the machines produced by Cartes. The The aim of this work is to study possible upgrades for the existing hot stamping machines. The main focus of this work is centred on two objectives: first, evaluating the pressing forces generated by this machine and characterising how the mat used in the stamping process reacts to such forces. Second, propose a new conformation for the press mechanism in order to improve the rigidity and performance of the machines. The first objective is reached through a combined approach: the mat is crudely characterized with experimental data, while the frame of the machine is studied through FEM analysis. The results obtained are combined and used to upgrade a worksheet that allows to estimate the forces exerted by the machines. The second objective is reached with the proposal of new, improved designs for the main components of the machines.