3 resultados para Industrial application
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Natural hazards affecting industrial installations could directly or indirectly cause an accident or series of accidents with serious consequences for the environment and for human health. Accidents initiated by a natural hazard or disaster which result in the release of hazardous materials are commonly referred to as Natech (Natural Hazard Triggering a Technological Disaster) accidents. The conditions brought about by these kinds of events are particularly problematic, the presence of the natural event increases the probability of exposition and causes consequences more serious than standard technological accidents. Despite a growing body of research and more stringent regulations for the design and operation of industrial activities, Natech accidents remain a threat. This is partly due to the absence of data and dedicated risk-assessment methodologies and tools. Even the Seveso Directives for the control of risks due to major accident hazards do not include any specific impositions regarding the management of Natech risks in the process industries. Among the few available tools there is the European Standard EN 62305, which addresses generic industrial sites, requiring to take into account the possibility of lightning and to select the appropriate protection measures. Since it is intended for generic industrial installations, this tool set the requirements for the design, the construction and the modification of structures, and is thus mainly oriented towards conventional civil building. A first purpose of this project is to study the effects and the consequences on industrial sites of lightning, which is the most common adverse natural phenomenon in Europe. Lightning is the cause of several industrial accidents initiated by natural causes. The industrial sectors most susceptible to accidents triggered by lightning is the petrochemical one, due to the presence of atmospheric tanks (especially floating roof tanks) containing flammable vapors which could be easily ignited by a lightning strike or by lightning secondary effects (as electrostatic and electromagnetic pulses or ground currents). A second purpose of this work is to implement the procedure proposed by the European Standard on a specific kind of industrial plant, i.e. on a chemical factory, in order to highlight the critical aspects of this implementation. A case-study plant handling flammable liquids was selected. The application of the European Standard allowed to estimate the incidence of lightning activity on the total value of the default release frequency suggested by guidelines for atmospheric storage tanks. Though it has become evident that the European Standard does not introduce any parameters explicitly pointing out the amount of dangerous substances which could be ignited or released. Furthermore the parameters that are proposed to describe the characteristics of the structures potentially subjected to lightning strikes are insufficient to take into account the specific features of different chemical equipment commonly present in chemical plants.
Resumo:
Analysis of the collapse of a precast r.c. industrial building during the 2012 Emilia earthquake, focus on the failure mechanisms in particular on the flexure-shear interactions. Analysis performed by a time history analysis using a FEM model with the software SAP2000. Finally a reconstruction of the collapse on the basis of the numerical data coming from the strength capacity of the elements failed, using formulation for lightly reinforced columns with high shear and bending moment.
Resumo:
Isochrysis galbana is a widely-used strain in aquaculture in spite of its low productivity. To maximize the productivity of processes based on this microalgae strain, a model was developed considering the influence of irradiance, temperature, pH and dissolved oxygen concentration on the photosynthesis and respiration rate. Results demonstrate that this strain tolerates temperatures up to 35ºC but it is highly sensitive to irradiances higher than 500 µE·m-2·s-1 and dissolved oxygen concentrations higher than 11 mg·l-1. With the researcher group of the “Universidad de Almeria”, the developed model was validated using data from an industrial-scale outdoor tubular photobioreactor demonstrating that inadequate temperature and dissolved oxygen concentrations reduce productivity to half that which is maximal, according to light availability under real outdoor conditions. The developed model is a useful tool for managing working processes, especially in the development of new processes based on this strain and to take decisions regarding optimal control strategies. Also the outdoor production of Isochrysis galbana T-iso in industrial size tubular photobioreactors (3.0 m3) has been studied. Experiments were performed modifying the dilution rate and evaluating the biomass productivity and quality, in addition to the overall performance of the system. Results confirmed that T-iso can be produced outdoor at commercial scale in continuous mode, productivities up to 20 g·m-2·day-1 of biomass rich in proteins (45%) and lipids (25%) being obtained. The utilization of this type of photobioreactors allows controlling the contamination and pH of the cultures, but daily variation of solar radiation imposes the existence of inadequate dissolved oxygen concentration and temperature at which the cells are exposed to inside the reactor. Excessive dissolved oxygen reduced the biomass productivity to 68% of maximal, whereas inadequate temperature reduces to 63% of maximal. Thus, optimally controlling these parameters the biomass productivity can be duplicated. These results confirm the potential to produce this valuable strain at commercial scale in optimally designed/operated tubular photobioreactors as a biotechnological industry.