2 resultados para Incentive policies
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La gestione del traffico è una delle principali problematiche delle città moderne, e porta alla definizione di nuove sfide per quanto riguarda l’ottimizzazione del flusso veicolare. Il controllo semaforico è uno degli elementi fondamentali per ottimizzare la gestione del traffico. Attualmente la rilevazione del traffico viene effettuata tramite sensori, tra i quali vengono maggiormente utilizzate le spire magnetiche, la cui installazione e gestione implica costi elevati. In questo contesto, il progetto europeo COLOMBO si pone come obiettivo l’ideazione di nuovi sistemi di regolazione semaforica in grado di rilevare il traffico veicolare mediante sensori più economici da installare e mantenere, e capaci, sulla base di tali rilevazioni, di auto organizzarsi, traendo ispirazione dal campo dell’intelligenza artificiale noto come swarm intelligence. Alla base di questa auto organizzazione semaforica di COLOMBO vi sono due diversi livelli di politiche: macroscopico e microscopico. Nel primo caso le politiche macroscopiche, utilizzando il feromone come astrazione dell’attuale livello del traffico, scelgono la politica di gestione in base alla quantità di feromone presente nelle corsie di entrata e di uscita. Per quanto riguarda invece le politiche microscopiche, il loro compito è quello di deci- dere la durata dei periodi di rosso o verde modificando una sequenza di fasi, chiamata in COLOMBO catena. Le catene possono essere scelte dal sistema in base al valore corrente della soglia di desiderabilità e ad ogni catena corrisponde una soglia di desiderabilità. Lo scopo di questo elaborato è quello di suggerire metodi alternativi all’attuale conteggio di questa soglia di desiderabilità in scenari di bassa presenza di dispositivi per la rilevazione dei veicoli. Ogni algoritmo complesso ha bisogno di essere ottimizzato per migliorarne le performance. Anche in questo caso, gli algoritmi proposti hanno subito un processo di parameter tuning per ottimizzarne le prestazioni in scenari di bassa presenza di dispositivi per la rilevazione dei veicoli. Sulla base del lavoro di parameter tuning, infine, sono state eseguite delle simulazioni per valutare quale degli approcci suggeriti sia il migliore.
Resumo:
In this thesis, we propose a novel approach to model the diffusion of residential PV systems. For this purpose, we use an agent-based model where agents are the families living in the area of interest. The case study is the Emilia-Romagna Regional Energy plan, which aims to increase the produc- tion of electricity from renewable energy. So, we study the microdata from the Survey on Household Income and Wealth (SHIW) provided by Bank of Italy in order to obtain the characteristics of families living in Emilia-Romagna. These data have allowed us to artificial generate families and reproduce the socio-economic aspects of the region. The families generated by means of a software are placed on the virtual world by associating them with the buildings. These buildings are acquired by analysing the vector data of regional buildings made available by the region. Each year, the model determines the level of diffusion by simulating the installed capacity. The adoption behaviour is influenced by social interactions, household’s economic situation, the environmental benefits arising from the adoption and the payback period of the investment.