2 resultados para Impact on Human Health and Safety

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its environmental, safety, health and socio-economic impacts, marine litter has been recognized as a 21st century global challenge, so that it has been included in Descriptor 10 of the EU MSFD. For its morphological features and anthropogenic pressures, the Adriatic Sea is very sensitive to the accumulation of debris, but data are inconsistent and fragmented. This thesis, in the framework of DeFishGear project, intents to assess marine litter on beaches and on seafloor in the Western Adriatic sea, and test if debris ingestion by fish occurs. Three beaches were sampled during two surveys in 2015. Benthic litter monitoring was carried out in the FAO GSA17 during fall 2014, using a rapido trawl. Litter ingestion was investigated through gut contents analysis of 260 fish belonging to 8 commercial species collected in Western Gulf of Venice. Average litter density on beaches was 1.5 items/m2 during spring, and decreased to 0.8 items/m2 in summer. Litter composition was heterogeneous and varied among sites, even if no significant differences were found. Most of debris consisted of plastic sheets, fragments, polystyrene pieces, mussels nets and cottons bud sticks, showing that sources are many and include aquaculture, land-based activities and local users of beaches. Average density of benthic litter was 913 items/Km2 (82 Kg/Km2). Plastic dominated in terms of numbers and weight, and consisted mainly of bags, sheets and mussel nets. The highest density was found close to the coast, and sources driving the major differences in litter distribution were mussel farms and shipping lanes. Litter ingestion occurred in 47% of examined fish, mainly consisting of fibers. Among species, S. pilchardus swallowed almost all debris categories. Findinds may provide a baseline to set the necessary measures to manage and minimize marine litter in the Western Adriatic region and to protect aquatic life from plastic pollution, even accounting the possible implications on human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microplastics (MPs) are highly debated emerging contaminants that are widespread on Earth. Nowadays, assessment of the risk that MPs pose on human health and environment were not developed yet, and standardized analytical methods for their quantification in complex matrices do not exist. Therefore, the formulation of standards which regulating MPs emission in the environment is not possible. The purpose of this study was to develop and apply a method for the analysis of MPs in sewage sludges and water from a wastewater treatment plant (WWTP), due to the relevance of those matrices as important pathway for MPs to enter the environment. Seven polymers were selected, because of their relevance on market production and their frequency of occurrence in such plants: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyvinyl chloride (PVC), and nylon 6 (PA-6). In the study, a pre-treatment procedure was optimised using Fenton’s reagent and analyses carried out by combining thermochemolysis with Py-GC-MS after sample filtration on quartz (0.3 µm). Polymer quantification was performed with solid polymer mixture in silica and good correlations were obtained with internal calibration. As main results, Fenton's reagent negatively affected the recovery of some polymers (PP, PE, PS, PA-6) and a possible matrix interference was noticed, especially for PET and PVC. The WWTP allowed a good abatement of PS, PE, PP and PVC (on average 90 %) and comparable results were hypothesised for the other polymers. Polymer concentrations is sewage sludges ranged between < 2 μg/gdry and 3.5 mg/ gdry, for PC and PVC, respectively. Possible overestimations for PET and PVC, due to matrix interreferences, were taken into account and discussed.