2 resultados para Impact Structure
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
An analysis and a subsequent solution is here presented. This document is about a groin design able to contrast the erosion actions given by waves in Lido di Dante. Advantages will be visible also for Fiumi Uniti's inlet, in the north side of the shoreline. Beach future progression and growth will be subjected to monitoring actions in the years after groin construction. The resulting effects of the design will have a positive impact not only on the local fauna and environment, but also, a naturalistic appeal will increase making new type of tourists coming not only for recreational purposes. The design phase is focused on possible design alternatives and their features. Particular interest is given to scouring phenomena all around the groin after its construction. Groin effects will impact not only on its south side, instead they will cause an intense erosion process on the downdrift front. Here, many fishing hut would be in danger, thus a beach revetment structure is needed to avoid any future criticality. In addiction, a numerical model based on a generalized shoreline change numerical model, also known as GENESIS, has been applied to the study area in order to perform a simplistic analysis of the shoreline and its future morphology. Critical zones are visible in proximity of the Fiumi Uniti's river inlet, where currents from the sea and the river itself start the erosion process that is affecting Lido di Dante since mid '80s, or even before. The model is affected by several assumptions that make results not to be interpreted as a real future trend of the shore. Instead the model allows the user to have a more clear view about critical processes induced by monochromatic inputed waves. In conclusion, the thesis introduce a wide analysis on a complex erosion process that is affecting many shoreline nowadays. A groin design is seen as a hard solution it is considered to be the only means able to decrease the rate of erosion.
Resumo:
When the offshore oil and gas supplies exhaust, most offshore platforms are decommissioned and removed. The purpose of this paper is to evaluate the fatigue damage that will occur during the service life of a jacket-type offshore platform using different fatigue approaches in particular locations. The locations considered for this metocean climate impact study were Norway (North Sea), Portugal (Atlantic Ocean - Leixões) and Italy (Adriatic Sea). A finite element model was created by the means of Sesam and two different fatigue analysis, deterministic and spectral, were applied. For the fatigue assessment, an appropriate description of the site-specific wave environment, during the jacket platform service life, must be accomplished. This description is usually provided by a wave scatter diagram. Wave scatter diagrams usually represent the long-term wave environment during a (typical) year and are based on several years of site-specific data to ensure that they adequately represent the wave environment at the location of the structure. In this thesis, the comparison between these fatigue approaches will serve as a pilot study for planned reliability analysis in decommissioned offshore platforms in order to maximize the reuse of these platforms for future wind generation systems.