4 resultados para Immobilization in polyethersulfone membranes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The present thesis focuses on the permebility analisys of Aquivion® 980 Perfluoro sulfonic acid (PFSA) polymer with particular reference to the influence of the equivalent weight (gram of polymer per molSO3H) on the permeation properties. Aquivion grade tested, indeed, were characterized by a lower equivalent weight ( 870 g/molSO3H against 980 of the present material) with respect to data present in the open literature. Permeability of different gases (CO2, N2, and CH4) was tested at different temperatures and different humidity, a parameter which greatly influences the gas transport in such hydrophilic material- Aquivion® swells consistently in humid conditions increasing its gas permeability of more than one order of magnitude with respect to values prevailing in dry conditions. Present data confirm such behavior being the permeability of all gases and vapors tested substantially increased in presence of water. Interestingly the increase in permeability results be similar for all the gases inspected, hence such enhanced permeation capability is not associated to a selectivity loss that happens in polymeric membranes. Although, the results, of CO2, are lower compared to those obtained with the different grades, with lower equivalent weight, of Aquivion, thus suggesting that an increase of this parameter is detrimental for both permeability and selectivity of the membranes with respect to CO2. This is likely related to the fact that a lower content of SO3H groups makes it difficult to have an interconnected water domain inside the membranes. A modeling approach was considered to describe the experimental data and to give a better insight into the observed behavior, unfortunately, it resulted not sensitive enough to catch the differences between the gas permeability in PSFAs with high and low equivalent weight. The latter were indeed usually contained within 10-20% which results to be the in the same range of model precision when used in a predictive way.
Resumo:
Ionic Liquids (ILs) constituted by organic cations and inorganic anions are particular salts with a melting point below 100°C. Their physical properties such as melting point and solubility can be tuned by altering the combination of their anions and cations. In the last years the interest in ILs has been centered mostly on their possible use as “green” alternatives to the traditional volatile organic solvents (VOCs) thanks to their low vapour pressure and the efficient ability in catalyst immobilization. In this regard, the subject of the present thesis is the study of the oxodiperoxomolybdenum catalyzed epoxidation of olefins in ILs media with hydrogen peroxide as the oxidant. In particular N-functionalized imidazolium salts, such as 1-(2-t-Butoxycarbonylamino-ethyl)-3-methylimidazolium (1), were synthesized with different counterions [I]-, [PF6]-, [NO3]-, [NTf2]- and [ClO4]– and tested as reaction solvents. The counterion exchange with [Cl]-, [NTf2]- and [NO3]- was also performed in unfuctionalized imidazolium salts such as 3-butyl-1-methylimidazol-3-ium (3). All the prepared ILs were tested in catalytic epoxidation of olefins exploiting oxodiperoxomolybdenum complexes [MoO(O2)2(C4H6N2)2] (4) and [MoO(O2)2(C5H8N2)2] (5) as catalysts. The IL 3[NTf2] and the catalysts 5 give rise to the best results leading to the selective formation of the epoxide of cis-cyclooctene avoiding hydrolysis side reaction. A preliminary study on the synthesis of novel NHC oxodiperoxomolybdenum complexes starting from imidazolium salts was also developed.
Resumo:
L’uso di molecole stabilizzanti (polimeri, surfattanti o leganti organici) nel corso della sintesi di nanoparticelle in sospensione è fondamentale per permettere il controllo della dimensione della fase attiva e per evitare l’aggregazione dei colloidi nella fase di sintesi e deposizione del sol metallico sul supporto. Nonostante questo, molto spesso, l’effetto dello stabilizzante non è solo quello di modificare le proprietà morfologiche (ad esempio la dimensione) delle nanoparticelle supportata ma anche di cambiare l’interazione della fase attiva con i reagenti dal punto di vista elettronico e diffusionale. La messa a punto di metodologie di sintesi controllate ed efficaci è molto importante. Le tecniche di sintesi utilizzate per la preparazione di catalizzatori a base di metalli nanostrutturati sono innumerevoli, ma una metodologia particolarmente interessante, che garantisce piccole dimensioni delle nanoparticelle ed un’elevata distribuzione del metallo sul supporto, è la tecnica della sol-immobilization. In questo lavoro di tesi è stato studiato come il tipo e la quantità di stabilizzante influisce sulla dimensione della nanoparticella e sull’attività catalitica del catalizzatore, usando come reazione modello l’ossidazione selettiva dell’5-idrossimetilfurfurale (HMF) ad acido 2,5 furandicarbossilico (FDCA).
Resumo:
The constantly increasing demand of clean water has become challenging to deal with over the past years, water being an ever more precious resource. In recent times, the existing wastewater treatments had to be integrated with new steps, due to the detection of so-called organic micropollutants (OMPs). These compounds have been shown to adversely affect the environment and possibly human health, even when found in very low concentrations. In order to remove OMPs from wastewater, one possible technique is a hybrid process combining filtration and adsorption. In this work, polyethersulfone multi-channel mixed-matrix membranes with embedded powdered activated carbon (PAC) were tested to investigate the membrane’s adsorption and desorption performance. Micropollutants retention was analyzed using the pharmaceutical compounds diclofenac (DCF), paracetamol (PARA) and carbamazepine (CBZ) in filtration mode, combining the PAC adsorption process with the membrane’s ultrafiltration. Desorption performance was studied through solvent regeneration, using seven different solvents: pure water, pure ethanol, mixture of ethanol and water in different concentration, sodium hydroxide and a mixture of ethanol and sodium hydroxide. Regeneration experiments were carried out in forward-flushing. At first regeneration efficiency was investigated using a single-solute solution (diclofenac in water). The mixture Ethanol/Water (50:50) was found to be the most efficient with long-term retention of 59% after one desorption cycle. It was, therefore, later tested on a membrane previously loaded with a multi-solute solution. Three desorption cycles were performed after which, retention (after 30 min) reached values of 87% for PARA and 72% for CBZ and 55% for DCF, which indicates decent regenerability. A morphological analysis on the membranes confirmed that, in any case, the regeneration cycles did not affect either the membranes’ structure, or the content and distribution of PAC in the matrix.