1 resultado para Imaging biomarkers

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La segmentazione prevede la partizione di un'immagine in aree strutturalmente o semanticamente coerenti. Nell'imaging medico, è utilizzata per identificare, contornandole, Regioni di Interesse (ROI) clinico, quali lesioni tumorali, oggetto di approfondimento tramite analisi semiautomatiche e automatiche, o bersaglio di trattamenti localizzati. La segmentazione di lesioni tumorali, assistita o automatica, consiste nell’individuazione di pixel o voxel, in immagini o volumi, appartenenti al tumore. La tecnica assistita prevede che il medico disegni la ROI, mentre quella automatica è svolta da software addestrati, tra cui i sistemi Computer Aided Detection (CAD). Mediante tecniche di visione artificiale, dalle ROI si estraggono caratteristiche numeriche, feature, con valore diagnostico, predittivo, o prognostico. L’obiettivo di questa Tesi è progettare e sviluppare un software di segmentazione assistita che permetta al medico di disegnare in modo semplice ed efficace una o più ROI in maniera organizzata e strutturata per futura elaborazione ed analisi, nonché visualizzazione. Partendo da Aliza, applicativo open-source, visualizzatore di esami radiologici in formato DICOM, è stata estesa l’interfaccia grafica per gestire disegno, organizzazione e memorizzazione automatica delle ROI. Inoltre, è stata implementata una procedura automatica di elaborazione ed analisi di ROI disegnate su lesioni tumorali prostatiche, per predire, di ognuna, la probabilità di cancro clinicamente non-significativo e significativo (con prognosi peggiore). Per tale scopo, è stato addestrato un classificatore lineare basato su Support Vector Machine, su una popolazione di 89 pazienti con 117 lesioni (56 clinicamente significative), ottenendo, in test, accuratezza = 77%, sensibilità = 86% e specificità = 69%. Il sistema sviluppato assiste il radiologo, fornendo una seconda opinione, non vincolante, adiuvante nella definizione del quadro clinico e della prognosi, nonché delle scelte terapeutiche.