3 resultados para Image processing technique
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.
Resumo:
Analisi strutturale dell’ala di un UAV (velivolo senza pilota a bordo), sviluppata usando varie metodologie: misurazioni sperimentali statiche e dinamiche, e simulazioni numeriche con l’utilizzo di programmi agli elementi finiti. L’analisi statica è stata a sua volta portata avanti seguendo due differenti metodi: la classica e diretta determinazione degli spostamenti mediante l’utilizzo di un catetometro e un metodo visivo, basato sull’elaborazione di immagini e sviluppato appositamente a tale scopo in ambiente Matlab. Oltre a ciò è stata svolta anche una analisi FEM volta a valutare l’errore che si ottiene affrontando il problema con uno studio numerico. Su tale modello FEM è stata svolta anche una analisi di tipo dinamico con lo scopo di confrontare tali dati con i dati derivanti da un test dinamico sperimentale per ottenere informazioni utili per una seguente possibile analisi aeroelastica.
Resumo:
The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.