1 resultado para Image Segmentation

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tra le patologie ossee attualmente riconosciute, l’osteoporosi ricopre il ruolo di protagonista data le sua diffusione globale e la multifattorialità delle cause che ne provocano la comparsa. Essa è caratterizzata da una diminuzione quantitativa della massa ossea e da alterazioni qualitative della micro-architettura del tessuto osseo con conseguente aumento della fragilità di quest’ultimo e relativo rischio di frattura. In campo medico-scientifico l’imaging con raggi X, in particolare quello tomografico, da decenni offre un ottimo supporto per la caratterizzazione ossea; nello specifico la microtomografia, definita attualmente come “gold-standard” data la sua elevata risoluzione spaziale, fornisce preziose indicazioni sulla struttura trabecolare e corticale del tessuto. Tuttavia la micro-CT è applicabile solo in-vitro, per cui l’obiettivo di questo lavoro di tesi è quello di verificare se e in che modo una diversa metodica di imaging, quale la cone-beam CT (applicabile invece in-vivo), possa fornire analoghi risultati, pur essendo caratterizzata da risoluzioni spaziali più basse. L’elaborazione delle immagini tomografiche, finalizzata all’analisi dei più importanti parametri morfostrutturali del tessuto osseo, prevede la segmentazione delle stesse con la definizione di una soglia ad hoc. I risultati ottenuti nel corso della tesi, svolta presso il Laboratorio di Tecnologia Medica dell’Istituto Ortopedico Rizzoli di Bologna, mostrano una buona correlazione tra le due metodiche quando si analizzano campioni definiti “ideali”, poiché caratterizzati da piccole porzioni di tessuto osseo di un solo tipo (trabecolare o corticale), incluso in PMMA, e si utilizza una soglia fissa per la segmentazione delle immagini. Diversamente, in casi “reali” (vertebre umane scansionate in aria) la stessa correlazione non è definita e in particolare è da escludere l’utilizzo di una soglia fissa per la segmentazione delle immagini.