3 resultados para Illegality Material in disciplinary matters

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work for the present thesis started in California, during my semester as an exchange student overseas. California is known worldwide for its seismicity and its effort in the earthquake engineering research field. For this reason, I immediately found interesting the Structural Dynamics Professor, Maria Q. Feng's proposal, to work on a pushover analysis of the existing Jamboree Road Overcrossing bridge. Concrete is a popular building material in California, and for the most part, it serves its functions well. However, concrete is inherently brittle and performs poorly during earthquakes if not reinforced properly. The San Fernando Earthquake of 1971 dramatically demonstrated this characteristic. Shortly thereafter, code writers revised the design provisions for new concrete buildings so to provide adequate ductility to resist strong ground shaking. There remain, nonetheless, millions of square feet of non-ductile concrete buildings in California. The purpose of this work is to perform a Pushover Analysis and compare the results with those of a Nonlinear Time-History Analysis of an existing bridge, located in Southern California. The analyses have been executed through the software OpenSees, the Open System for Earthquake Engineering Simulation. The bridge Jamboree Road Overcrossing is classified as a Standard Ordinary Bridge. In fact, the JRO is a typical three-span continuous cast-in-place prestressed post-tension box-girder. The total length of the bridge is 366 ft., and the height of the two bents are respectively 26,41 ft. and 28,41 ft.. Both the Pushover Analysis and the Nonlinear Time-History Analysis require the use of a model that takes into account for the nonlinearities of the system. In fact, in order to execute nonlinear analyses of highway bridges it is essential to incorporate an accurate model of the material behavior. It has been observed that, after the occurrence of destructive earthquakes, one of the most damaged elements on highway bridges is a column. To evaluate the performance of bridge columns during seismic events an adequate model of the column must be incorporated. Part of the work of the present thesis is, in fact, dedicated to the modeling of bents. Different types of nonlinear element have been studied and modeled, with emphasis on the plasticity zone length determination and location. Furthermore, different models for concrete and steel materials have been considered, and the selection of the parameters that define the constitutive laws of the different materials have been accurate. The work is structured into four chapters, to follow a brief overview of the content. The first chapter introduces the concepts related to capacity design, as the actual philosophy of seismic design. Furthermore, nonlinear analyses both static, pushover, and dynamic, time-history, are presented. The final paragraph concludes with a short description on how to determine the seismic demand at a specific site, according to the latest design criteria in California. The second chapter deals with the formulation of force-based finite elements and the issues regarding the objectivity of the response in nonlinear field. Both concentrated and distributed plasticity elements are discussed into detail. The third chapter presents the existing structure, the software used OpenSees, and the modeling assumptions and issues. The creation of the nonlinear model represents a central part in this work. Nonlinear material constitutive laws, for concrete and reinforcing steel, are discussed into detail; as well as the different scenarios employed in the columns modeling. Finally, the results of the pushover analysis are presented in chapter four. Capacity curves are examined for the different model scenarios used, and failure modes of concrete and steel are discussed. Capacity curve is converted into capacity spectrum and intersected with the design spectrum. In the last paragraph, the results of nonlinear time-history analyses are compared to those of pushover analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this dissertation is to provide a translation from English into Italian of a specialised scientific article published in the Cambridge Working Papers in Economics series. In this text, the authors estimate the economic consequences of the earthquake that hit the Abruzzo region in 2009. An extract of this translation will be published as part of conference proceedings. The main reason behind this choice is a personal interest in specialised translation in the economic domain. Moreover, the subject of the article is of particular interest to the Italian readership. The aim of this study is to show how a non-specialised translator can tackle with such a highly specialised translation with the use of appropriate terminology resources and the collaboration of field experts. The translation could be of help to other Italian linguists looking for translated material in this particular domain where English seems to be the dominant language. In order to ensure consistent terminology and adequate style, the document has been translated with the use of different resources, such as dictionaries, glossaries and specialised corpora. I also contacted field experts and the authors of text. The collaboration with the authors proved to be an invaluable resource yet one to be carefully managed. This work is divided into 5 chapters. The first deals with domain-specific sublanguages. The second gives an overview of corpus linguistics and describes the corpora designed for the translation. The third provides an analysis of the article, focusing on syntactical, lexical and structural features while the fourth presents the translation, side-by-side with the source text. The fifth comments on the main difficulties encountered in the translation and the strategies used, as well as the relationship with the authors and their review of the published text. Appendix I contains the econometric glossary English – Italian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The digital revolution has affected all aspects of human life, and interpreting is no exception. This study will provide an overview of the technology tools available to the interpreter, but it will focus more on simultaneous interpretation, particularly on the “simultaneous interpretation with text” method. The decision to analyse this particular method arose after a two-day experience at the Court of Justice of the European Union (CJEU), during research for my previous Master’s dissertation. During those days, I noticed that interpreters were using "simultaneous interpretation with text" on a daily basis. Owing to the efforts and processes this method entails, this dissertation will aim at discovering whether technology can help interpreters, and if so, how. The first part of the study will describe the “simultaneous with text” approach, and how it is used at the CJEU; the data provided by a survey for professional interpreters will describe its use in other interpreting situations. The study will then describe Computer-Assisted Language Learning technologies (CALL) and technologies for interpreters. The second part of the study will focus on the interpreting booth, which represents the first application of the technology in the interpreting field, as well as on the technologies that can be used inside the booth: programs, tablets and apps. The dissertation will then analyse the programs which might best help the interpreter in "simultaneous with text" mode, before providing some proposals for further software upgrades. In order to give a practical description of the possible upgrades, the domain of “judicial cooperation in criminal matters” will be taken as an example. Finally, after a brief overview of other applications of technology in the interpreting field (i.e. videoconferencing, remote interpreting), the conclusions will summarize the results provided by the study and offer some final reflections on the teaching of interpreting.