8 resultados para IT-supported field data management
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il lavoro svolto si concentra sullo studio e lo sviluppo dei sistemi software per la gestione dei big data. Inizialmente sono stati analizzati i settori nei quali i big data si stanno diffondendo maggiormente per poi studiare l'ingegnerizzazione e lo sviluppo dei sistemi in grado di gestire questo tipo di dati. Sono state studiate tutte le fasi del processo di realizzazione del software e i rischi e i problemi che si possono incontrare. Infine è stato presentato un software di analisi di big data: Google BigQuery.
Resumo:
L’esperimento CMS a LHC ha raccolto ingenti moli di dati durante Run-1, e sta sfruttando il periodo di shutdown (LS1) per evolvere il proprio sistema di calcolo. Tra i possibili miglioramenti al sistema, emergono ampi margini di ottimizzazione nell’uso dello storage ai centri di calcolo di livello Tier-2, che rappresentano - in Worldwide LHC Computing Grid (WLCG)- il fulcro delle risorse dedicate all’analisi distribuita su Grid. In questa tesi viene affrontato uno studio della popolarità dei dati di CMS nell’analisi distribuita su Grid ai Tier-2. Obiettivo del lavoro è dotare il sistema di calcolo di CMS di un sistema per valutare sistematicamente l’ammontare di spazio disco scritto ma non acceduto ai centri Tier-2, contribuendo alla costruzione di un sistema evoluto di data management dinamico che sappia adattarsi elasticamente alle diversi condizioni operative - rimuovendo repliche dei dati non necessarie o aggiungendo repliche dei dati più “popolari” - e dunque, in ultima analisi, che possa aumentare l’“analysis throughput” complessivo. Il Capitolo 1 fornisce una panoramica dell’esperimento CMS a LHC. Il Capitolo 2 descrive il CMS Computing Model nelle sue generalità, focalizzando la sua attenzione principalmente sul data management e sulle infrastrutture ad esso connesse. Il Capitolo 3 descrive il CMS Popularity Service, fornendo una visione d’insieme sui servizi di data popularity già presenti in CMS prima dell’inizio di questo lavoro. Il Capitolo 4 descrive l’architettura del toolkit sviluppato per questa tesi, ponendo le basi per il Capitolo successivo. Il Capitolo 5 presenta e discute gli studi di data popularity condotti sui dati raccolti attraverso l’infrastruttura precedentemente sviluppata. L’appendice A raccoglie due esempi di codice creato per gestire il toolkit attra- verso cui si raccolgono ed elaborano i dati.
Resumo:
This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.
Resumo:
LHC experiments produce an enormous amount of data, estimated of the order of a few PetaBytes per year. Data management takes place using the Worldwide LHC Computing Grid (WLCG) grid infrastructure, both for storage and processing operations. However, in recent years, many more resources are available on High Performance Computing (HPC) farms, which generally have many computing nodes with a high number of processors. Large collaborations are working to use these resources in the most efficient way, compatibly with the constraints imposed by computing models (data distributed on the Grid, authentication, software dependencies, etc.). The aim of this thesis project is to develop a software framework that allows users to process a typical data analysis workflow of the ATLAS experiment on HPC systems. The developed analysis framework shall be deployed on the computing resources of the Open Physics Hub project and on the CINECA Marconi100 cluster, in view of the switch-on of the Leonardo supercomputer, foreseen in 2023.
Resumo:
Analisi e applicazione dei processi di data mining al flusso informativo di sistemi real-time. Implementazione e analisi di un algoritmo autoadattivo per la ricerca di frequent patterns su macchine automatiche.
Resumo:
In CMS è stato lanciato un progetto di Data Analytics e, all’interno di esso, un’attività specifica pilota che mira a sfruttare tecniche di Machine Learning per predire la popolarità dei dataset di CMS. Si tratta di un’osservabile molto delicata, la cui eventuale predizione premetterebbe a CMS di costruire modelli di data placement più intelligenti, ampie ottimizzazioni nell’uso dello storage a tutti i livelli Tiers, e formerebbe la base per l’introduzione di un solito sistema di data management dinamico e adattivo. Questa tesi descrive il lavoro fatto sfruttando un nuovo prototipo pilota chiamato DCAFPilot, interamente scritto in python, per affrontare questa sfida.
Resumo:
Dall'analisi dei big data si possono trarre degli enormi benefici in svariati ambiti applicativi. Uno dei fattori principali che contribuisce alla ricchezza dei big data, consiste nell'uso non previsto a priori di dati immagazzinati in precedenza, anche in congiunzione con altri dataset eterogenei: questo permette di trovare correlazioni significative e inaspettate tra i dati. Proprio per questo, il Valore, che il dato potenzialmente porta con sè, stimola le organizzazioni a raccogliere e immagazzinare sempre più dati e a ricercare approcci innovativi e originali per effettuare analisi su di essi. L’uso fortemente innovativo che viene fatto dei big data in questo senso e i requisiti tecnologici richiesti per gestirli hanno aperto importanti problematiche in materia di sicurezza e privacy, tali da rendere inadeguati o difficilmente gestibili, gli strumenti di sicurezza utilizzati finora nei sistemi tradizionali. Con questo lavoro di tesi si intende analizzare molteplici aspetti della sicurezza in ambito big data e offrire un possibile approccio alla sicurezza dei dati. In primo luogo, la tesi si occupa di comprendere quali sono le principali minacce introdotte dai big data in ambito di privacy, valutando la fattibilità delle contromisure presenti all’attuale stato dell’arte. Tra queste anche il controllo dell’accesso ha riscontrato notevoli sfide causate dalle necessità richieste dai big data: questo elaborato analizza pregi e difetti del controllo dell’accesso basato su attributi (ABAC), un modello attualmente oggetto di discussione nel dibattito inerente sicurezza e privacy nei big data. Per rendere attuabile ABAC in un contesto big data, risulta necessario l’ausilio di un supporto per assegnare gli attributi di visibilità alle informazioni da proteggere. L’obiettivo di questa tesi consiste nel valutare fattibilità, caratteristiche significative e limiti del machine learning come possibile approccio di utilizzo.
Resumo:
Il gioco è un concetto che accompagna la vita di innumerevoli specie animali in forme, modi e tempi differenti. L’uomo scopre il gioco sin dai primi mesi di vita. Con l’obiettivo di migliorare la condizione emotiva dell'uomo nello svolgimento delle azioni quotidiane, nasce negli ultimi anni la gamification. Il termine consta nell’integrazione delle tecniche di progettazione dei giochi in contesti esterni ai giochi. Consiste nel progettare ponendo particolare attenzione sul coinvolgimento dell’utente per renderlo capace di sperimentare le emozioni tipiche dello svago: fierezza per le proprie azioni, qualunque esse siano. Gli ambiti di applicazione sono innumerevoli. Questa tesi si concentra sullo studio del contesto aziendale, focalizzandosi sulle mansioni di data entry, allo scopo di creare una piattaforma completa, composta da strumenti informatici ed elementi di gioco, che possa aumentare il coinvolgimento dei dipendenti nel proprio lavoro. Si è scelto questo tipo di attività in quanto composta da incarichi facilmente misurabili e allo stesso tempo poco appassionanti per il dipendente perché altamente meccanici e ripetitivi. La sperimentazione in questo ambito permette quindi di valutare con certezza matematica se i miglioramenti introdotti dall'integrazione delle tecniche di gamification nello stato d’animo dei dipendenti hanno anche la conseguenza di aumentare la produttività, verificando quindi se una piattaforma ludicizzata possa essere auto-sostenibile in ambito aziendale. Al termine della tesi si giungerà ad ottenere il progetto di un sistema completo, composto da software ed attività extra-informatiche, che i dipendenti valuteranno con un questionario. La piattaforma otterrà buoni voti necessitando principalmente di un maggior apporto contenutistico e del contributo professionale di un esperto progettista di giochi perché abbia le potenzialità per diventare un caso di successo.