5 resultados para ISING ANTIFERROMAGNET

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'elaborato tratta le transizioni di fase nel modello di Ising, usato per descrivere i sistemi magnetici. Tramite l'argomento di Landau viene introdotto il problema della dimensionalità per l'esistenza di una fase ferromagnetica. Con il sistema di un gas forzato su reticolo viene presentato il carattere universale dei fenomeni critici per mezzo degli esponenti critici. Viene poi risolto in modo esatto il modello unidimensionale, che non prevede una fase ferromagnetica. Per sistemi a dimensionali maggiore viene introdotto il metodo dell'approssimazione di campo medio. Viene infine determinato il valore della temperatura critica per reticoli planari quadrati e di questi viene mostrata la soluzione esatta di Lars Onsager.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'elaborato fornisce una introduzione al modello di Ising, utilizzato nello studio delle transizioni di fase tra la fase ferromagnetica e quella paramagnetica dei materiali. Nella prima parte viene trattato il modello unidimensionale, di cui viene esposta la soluzione esatta attraverso l'utilizzo delle matrici di trasferimento, dimostrando quindi l'inesistenza di una transizione di fase a temperature finite non nulle. Vengono calcolate le funzioni termodinamiche e se ne dimostra l'indipendenza dalle condizioni al contorno nel limite termodinamico.Viene proposta infine una spiegazione qualitativa del comportamento microscopico, attraverso la lunghezza di correlazione. Nella seconda parte viene trattato il caso a due dimensioni. Inizialmente viene determinata la temperatura critica per reticoli quadrati, attraverso il riconoscimento della presenza di una relazione di dualita tra l'espansione per alte e per basse temperature della funzione di partizione. Successivamente si fornisce la soluzione esatta attraverso una versione modificata del procedimento, originariamente ideato da L.Onsager, di cui e proposta una traccia della dimostrazione. Viene infine brevemente discussa l'importanza che questo risultato ebbe storicamente nella fisica delle transizioni di fase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il Modello di Hopfield è un tentativo di modellizzare il comportamento di una memoria associativa come proprietà emergente di un network costituito da unità a due stati interagenti tra loro, e costituisce un esempio di come gli strumenti della meccanica statistica possano essere applicati anche al campo delle reti neurali. Nel presente elaborato viene esposta l'analogia tra il Modello di Hopfield e il Modello di Ising nel contesto delle transizioni di fase, applicando a entrambi i modelli la teoria di campo medio. Viene esposta la dinamica a temperatura finita e ricavata e risolta l'equazione di punto a sella per il limite di non saturazione del Modello di Hopfield. Vengono inoltre accennate le principali estensioni del Modello di Hopfield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nella tesi sono trattate due famiglie di modelli meccanico statistici su vari grafi: i modelli di spin ferromagnetici (o di Ising) e i modelli di monomero-dimero. Il primo capitolo è dedicato principalmente allo studio del lavoro di Dembo e Montanari, in cui viene risolto il modello di Ising su grafi aleatori. Nel secondo capitolo vengono studiati i modelli di monomero-dimero, a partire dal lavoro di Heilemann e Lieb,con l'intento di dare contributi nuovi alla teoria. I principali temi trattati sono disuguaglianze di correlazione, soluzioni esatte su alcuni grafi ad albero e sul grafo completo, la concentrazione dell'energia libera intorno al proprio valor medio sul grafo aleatorio diluito di Erdös-Rényi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).