2 resultados para INTERCALATION

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese Hexacyanoferrate (MnHCF) and nickel doped manganese hexacyanoferrate were synthesized by simple co-precipitation method. The water content and chemical formula was obtained by TGA and MP-AES measurements, functional groups by FT-IR analysis, the crystal structure by PXRD and a local geometry by XAS. Elemental species of cycled samples were further investigated by TXM and 2D XRF. Electrochemical tests were performed in the glass cell. With addition of nickel, vacancies and water content increased in the sample. Crystal structure changed from monoclinic to cubic. Ni disturbed the local structure of Mn, site, however, almost no change was observed in Fe site. After charge/discharge cycling of MnHCF intercalation was already found in the peripheries of charged species after 20 cycle in 2D XRF analysis and randomly distributed intercalated regions after 50 cycles in TXM analysis. Cyclic voltammetry showed that peak-to-peak separation is increasing in case of the addition of Ni to MnHCF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium manganese hexacyanoferrate (NaMnHCF) and its derivatives have been synthesized by simple co-precipitation method with addition of the citric and ascorbic acids respectively. The correspondent crystal structure, water content, chemical formula and a deep structural investigation of prepared samples have been performed by means of the combination of the laboratory and synchrotron techniques (PXRD, FT-IR, TGA, MP-AES and XAS). Electrochemical tests have been done using three-electrode system in sodium nitrate solution at different concentration. From cyclic voltammetry curves, Fe3+/2+ redox peak has been observed, whereas Mn3+/2+ peak was not always evident. Structural stability of the cycled samples has then been tested using 2D XRF imaging and Transmission X-ray microscopy (TXM) techniques. The intercalation of NaMnHCF after 20 cycles has been found by micro-XANES analysis of the highlighted spots which have been found in the XRF images. TXM has also confirmed the appearance of the intercalated particles after 50 cycles comparing the spectra between charged and discharged materials at three different edges (Mn, Fe and N). However, by comparison with lithium samples, it seems obvious that sodium samples are more homogeneous and intercalation is at the very beginning indicating the relative structural stability of sodium manganese hexacyanoferrate electrode material.