4 resultados para INTELLIGENCE SYSTEMS METHODOLOGY

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to effectively manage the documentation covering the entire production process, from the concept phase right through to market realise, constitutes a key issue in the creation of a successful and highly competitive product. For almost forty years the most commonly used strategies to achieve this have followed Product Lifecycle Management (PLM) guidelines. Translated into information management systems at the end of the '90s, this methodology is now widely used by companies operating all over the world in many different sectors. PLM systems and editor programs are the two principal types of software applications used by companies for their process aotomation. Editor programs allow to store in documents the information related to the production chain, while the PLM system stores and shares this information so that it can be used within the company and made it available to partners. Different software tools, which capture and store documents and information automatically in the PLM system, have been developed in recent years. One of them is the ''DirectPLM'' application, which has been developed by the Italian company ''Focus PLM''. It is designed to ensure interoperability between many editors and the Aras Innovator PLM system. In this dissertation we present ''DirectPLM2'', a new version of the previous software application DirectPLM. It has been designed and developed as prototype during the internship by Focus PLM. Its new implementation separates the abstract logic of business from the real commands implementation, previously strongly dependent on Aras Innovator. Thanks to its new design, Focus PLM can easily develop different versions of DirectPLM2, each one devised for a specific PLM system. In fact, the company can focus the development effort only on a specific set of software components which provides specialized functions interacting with that particular PLM system. This allows shorter Time-To-Market and gives the company a significant competitive advantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The usage of version control systems and the capabilities of storing the source code in public platforms such as GitHub increased the number of passwords, API Keys and tokens that can be found and used causing a massive security issue for people and companies. In this project, SAP's secret scanner Credential Digger is presented. How it can scan repositories to detect hardcoded secrets and how it manages to filter out the false positives between them. Moreover, how I have implemented the Credential Digger's pre-commit hook. A performance comparison between three different implementations of the hook based on how it interacts with the Machine Learning model is presented. This project also includes how it is possible to use already detected credentials to decrease the number false positive by leveraging the similarity between leaks by using the Bucket System.