5 resultados para IMPULSE

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study concerns the acoustical characterisation of Italian historical theatres. It moved from the ISO 3382 which provides the guidelines for the measurement of a well established set of room acoustic parameters inside performance spaces. Nevertheless, the peculiarity of Italian historical theatres needs a more specific approach. The Charter of Ferrara goes in this direction, aiming at qualifying the sound field in this kind of halls and the present work pursues the way forward. Trying to understand how the acoustical qualification should be done, the Bonci Theatre in Cesena has been taken as a case study. In September 2012 acoustical measurements were carried out in the theatre, recording monaural e binaural impulse responses at each seat in the hall. The values of the time criteria, energy criteria and psycho-acoustical and spatial criteria have been extracted according to ISO 3382. Statistics were performed and a 3D model of the theatre was realised and tuned. Statistical investigations were carried out on the whole set of measurement positions and on carefully chosen reduced subsets; it turned out that these subsets are representative only of the “average” acoustics of the hall. Normality tests were carried out to verify whether EDT, T30 and C80 could be described with some degree of reliability with a theoretical distribution. Different results, according to the varying assumptions underlying each test, were found. Finally, an attempt was made to correlate the numerical results emerged from the statistical analysis to the perceptual sphere. Looking for “acoustical equivalent areas”, relative difference limens were considered as threshold values. No rule of thumb emerged. Finally, the significance of the usual representation through mean values and standard deviation, which may be meaningful for normal distributed data, was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to analyse the chemistry models of low pressure Helicon discharges fed with iodine and air. In particular the focus of this research is to understand the plasma dynamics in order to predict propulsive performances of iodine and air-breathing Helicon Plasma Thrusters. The two systems have been simulated and analysed with the use of global models, i.e. a 0 dimensional tool to solve the set of governing equations by assuming that all quantities are volume averaged. Furthermore, some strategies have been implemented to improve the accuracy of this approach. A verification have been accomplished on the global models for both iodine and air, comparing results against simulations taken from literature. Moreover, the iodine global model has been validated against the experimental measurements of REGULUS, an helicon plasma thruster developed by the Italian company T4i, with a good agreement. From the analysis of iodine model, it has been found a significantly higher density for atomic positive ions with respect to molecular ions. Negative ions, instead, have shown to have negligible effect on the propulsive results. Also, the influence of reactions between heavy particles has been analysed with the global model. Results have demonstrated that, in the iodine case, chemistry is almost entirely affected by electronic collisions. For what concerns air-breathing results, it has been investigated the effects of the orbital height on propulsive performances. In particular, the global model has shown that at lower height, the values of thrust and specific impulse are lower due a change in atmosphere concentration. Finally, the iodine chemistry model has been introduced in the fluid code 3D-VIRTUS in order to preliminary assess the plasma properties of a Helicon discharge chamber for electric propulsion.