10 resultados para Hydrologic Modeling Catchment and Runoff Computations

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis aims to contribute to innovation in the Urban Air Mobility and Delivery sector and represents a solid starting point for air logistics and its future scenarios. The dissertation focuses on modeling, simulation, and control of a formation of multirotor aircraft for cooperative load transportation, with particular attention to environmental sustainability. First, a simulation and test environment is developed to assess technologies for suspended load stabilization. Starting from the mathematical model of two identical multirotors, formation-flight-keeping and collision-avoidance algorithms are analyzed. This approach guarantees both the safety of the vehicles within the formation and that of the payload, which may be made of people in the very near future. Afterwards, a mathematical model for the suspended load is implemented, as well as an active controller for its stabilization. The key focus of this part is represented by both analysis and control of payload oscillatory motion, by thoroughly investigating load kinetic energy decay. At this point, several test cases were introduced, in order to understand which strategy is the most effective and safe in terms of future applications in the field of air logistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An industrial manipulator equipped with an automatic clay extruder is used to realize a machine that can manufacture additively clay objects. The desired geometries are designed by means of a 3D modeling software and then sliced in a sequence of layers with the same thickness of the extruded clay section. The profiles of each layer are transformed in trajectories for the extruder and therefore for the end-effector of the manipulator. The goal of this thesis is to improve the algorithm for the inverse kinematic resolution and the integration of the routine within the development software that controls the machine (Rhino/Grasshopper). The kinematic model is described by homogeneous transformations, adopting the Denavit-Hartenberg standard convention. The function is implemented in C# and it has been preliminarily tested in Matlab. The outcome of this work is a substantial reduction of the computation time relative to the execution of the algorithm, which is halved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT (italiano) Con crescente attenzione riguardo al problema della sicurezza di ponti e viadotti esistenti nei Paesi Bassi, lo scopo della presente tesi è quello di studiare, mediante la modellazione con Elementi Finiti ed il continuo confronto con risultati sperimentali, la risposta in esercizio di elementi che compongono infrastrutture del genere, ovvero lastre in calcestruzzo armato sollecitate da carichi concentrati. Tali elementi sono caratterizzati da un comportamento ed una crisi per taglio, la cui modellazione è, da un punto di vista computazionale, una sfida piuttosto ardua, a causa del loro comportamento fragile combinato a vari effetti tridimensionali. La tesi è incentrata sull'utilizzo della Sequentially Linear Analysis (SLA), un metodo di soluzione agli Elementi Finiti alternativo rispetto ai classici approcci incrementali e iterativi. Il vantaggio della SLA è quello di evitare i ben noti problemi di convergenza tipici delle analisi non lineari, specificando direttamente l'incremento di danno sull'elemento finito, attraverso la riduzione di rigidezze e resistenze nel particolare elemento finito, invece dell'incremento di carico o di spostamento. Il confronto tra i risultati di due prove di laboratorio su lastre in calcestruzzo armato e quelli della SLA ha dimostrato in entrambi i casi la robustezza del metodo, in termini di accuratezza dei diagrammi carico-spostamento, di distribuzione di tensioni e deformazioni e di rappresentazione del quadro fessurativo e dei meccanismi di crisi per taglio. Diverse variazioni dei più importanti parametri del modello sono state eseguite, evidenziando la forte incidenza sulle soluzioni dell'energia di frattura e del modello scelto per la riduzione del modulo elastico trasversale. Infine è stato effettuato un paragone tra la SLA ed il metodo non lineare di Newton-Raphson, il quale mostra la maggiore affidabilità della SLA nella valutazione di carichi e spostamenti ultimi insieme ad una significativa riduzione dei tempi computazionali. ABSTRACT (english) With increasing attention to the assessment of safety in existing dutch bridges and viaducts, the aim of the present thesis is to study, through the Finite Element modeling method and the continuous comparison with experimental results, the real response of elements that compose these infrastructures, i.e. reinforced concrete slabs subjected to concentrated loads. These elements are characterized by shear behavior and crisis, whose modeling is, from a computational point of view, a hard challenge, due to their brittle behavior combined with various 3D effects. The thesis is focused on the use of Sequentially Linear Analysis (SLA), an alternative solution technique to classical non linear Finite Element analyses that are based on incremental and iterative approaches. The advantage of SLA is to avoid the well-known convergence problems of non linear analyses by directly specifying a damage increment, in terms of a reduction of stiffness and strength in the particular finite element, instead of a load or displacement increment. The comparison between the results of two laboratory tests on reinforced concrete slabs and those obtained by SLA has shown in both the cases the robustness of the method, in terms of accuracy of load-displacements diagrams, of the distribution of stress and strain and of the representation of the cracking pattern and of the shear failure mechanisms. Different variations of the most important parameters have been performed, pointing out the strong incidence on the solutions of the fracture energy and of the chosen shear retention model. At last a confrontation between SLA and the non linear Newton-Raphson method has been executed, showing the better reliability of the SLA in the evaluation of the ultimate loads and displacements, together with a significant reduction of computational times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work for the present thesis started in California, during my semester as an exchange student overseas. California is known worldwide for its seismicity and its effort in the earthquake engineering research field. For this reason, I immediately found interesting the Structural Dynamics Professor, Maria Q. Feng's proposal, to work on a pushover analysis of the existing Jamboree Road Overcrossing bridge. Concrete is a popular building material in California, and for the most part, it serves its functions well. However, concrete is inherently brittle and performs poorly during earthquakes if not reinforced properly. The San Fernando Earthquake of 1971 dramatically demonstrated this characteristic. Shortly thereafter, code writers revised the design provisions for new concrete buildings so to provide adequate ductility to resist strong ground shaking. There remain, nonetheless, millions of square feet of non-ductile concrete buildings in California. The purpose of this work is to perform a Pushover Analysis and compare the results with those of a Nonlinear Time-History Analysis of an existing bridge, located in Southern California. The analyses have been executed through the software OpenSees, the Open System for Earthquake Engineering Simulation. The bridge Jamboree Road Overcrossing is classified as a Standard Ordinary Bridge. In fact, the JRO is a typical three-span continuous cast-in-place prestressed post-tension box-girder. The total length of the bridge is 366 ft., and the height of the two bents are respectively 26,41 ft. and 28,41 ft.. Both the Pushover Analysis and the Nonlinear Time-History Analysis require the use of a model that takes into account for the nonlinearities of the system. In fact, in order to execute nonlinear analyses of highway bridges it is essential to incorporate an accurate model of the material behavior. It has been observed that, after the occurrence of destructive earthquakes, one of the most damaged elements on highway bridges is a column. To evaluate the performance of bridge columns during seismic events an adequate model of the column must be incorporated. Part of the work of the present thesis is, in fact, dedicated to the modeling of bents. Different types of nonlinear element have been studied and modeled, with emphasis on the plasticity zone length determination and location. Furthermore, different models for concrete and steel materials have been considered, and the selection of the parameters that define the constitutive laws of the different materials have been accurate. The work is structured into four chapters, to follow a brief overview of the content. The first chapter introduces the concepts related to capacity design, as the actual philosophy of seismic design. Furthermore, nonlinear analyses both static, pushover, and dynamic, time-history, are presented. The final paragraph concludes with a short description on how to determine the seismic demand at a specific site, according to the latest design criteria in California. The second chapter deals with the formulation of force-based finite elements and the issues regarding the objectivity of the response in nonlinear field. Both concentrated and distributed plasticity elements are discussed into detail. The third chapter presents the existing structure, the software used OpenSees, and the modeling assumptions and issues. The creation of the nonlinear model represents a central part in this work. Nonlinear material constitutive laws, for concrete and reinforcing steel, are discussed into detail; as well as the different scenarios employed in the columns modeling. Finally, the results of the pushover analysis are presented in chapter four. Capacity curves are examined for the different model scenarios used, and failure modes of concrete and steel are discussed. Capacity curve is converted into capacity spectrum and intersected with the design spectrum. In the last paragraph, the results of nonlinear time-history analyses are compared to those of pushover analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis is the application of an opto-electronic numerical simulation to heterojunction silicon solar cells featuring an all back contact architecture (Interdigitated Back Contact Hetero-Junction IBC-HJ). The studied structure exhibits both metal contacts, emitter and base, at the back surface of the cell with the objective to reduce the optical losses due to the shadowing by front contact of conventional photovoltaic devices. Overall, IBC-HJ are promising low-cost alternatives to monocrystalline wafer-based solar cells featuring front and back contact schemes, in fact, for IBC-HJ the high concentration doping diffusions are replaced by low-temperature deposition processes of thin amorphous silicon layers. Furthermore, another advantage of IBC solar cells with reference to conventional architectures is the possibility to enable a low-cost assembling of photovoltaic modules, being all contacts on the same side. A preliminary extensive literature survey has been helpful to highlight the specific critical aspects of IBC-HJ solar cells as well as the state-of-the-art of their modeling, processing and performance of practical devices. In order to perform the analysis of IBC-HJ devices, a two-dimensional (2-D) numerical simulation flow has been set up. A commercial device simulator based on finite-difference method to solve numerically the whole set of equations governing the electrical transport in semiconductor materials (Sentuarus Device by Synopsys) has been adopted. The first activity carried out during this work has been the definition of a 2-D geometry corresponding to the simulation domain and the specification of the electrical and optical properties of materials. In order to calculate the main figures of merit of the investigated solar cells, the spatially resolved photon absorption rate map has been calculated by means of an optical simulator. Optical simulations have been performed by using two different methods depending upon the geometrical features of the front interface of the solar cell: the transfer matrix method (TMM) and the raytracing (RT). The first method allows to model light prop-agation by plane waves within one-dimensional spatial domains under the assumption of devices exhibiting stacks of parallel layers with planar interfaces. In addition, TMM is suitable for the simulation of thin multi-layer anti reflection coating layers for the reduction of the amount of reflected light at the front interface. Raytracing is required for three-dimensional optical simulations of upright pyramidal textured surfaces which are widely adopted to significantly reduce the reflection at the front surface. The optical generation profiles are interpolated onto the electrical grid adopted by the device simulator which solves the carriers transport equations coupled with Poisson and continuity equations in a self-consistent way. The main figures of merit are calculated by means of a postprocessing of the output data from device simulation. After the validation of the simulation methodology by means of comparison of the simulation result with literature data, the ultimate efficiency of the IBC-HJ architecture has been calculated. By accounting for all optical losses, IBC-HJ solar cells result in a theoretical maximum efficiency above 23.5% (without texturing at front interface) higher than that of both standard homojunction crystalline silicon (Homogeneous Emitter HE) and front contact heterojuction (Heterojunction with Intrinsic Thin layer HIT) solar cells. However it is clear that the criticalities of this structure are mainly due to the defects density and to the poor carriers transport mobility in the amorphous silicon layers. Lastly, the influence of the most critical geometrical and physical parameters on the main figures of merit have been investigated by applying the numerical simulation tool set-up during the first part of the present thesis. Simulations have highlighted that carrier mobility and defects level in amorphous silicon may lead to a potentially significant reduction of the conversion efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many buildings constructed during the middle of the 20th century were constructed with criteria that fall short of current requirements. Although shortcomings are possible in all aspects of the design, the inadequacies in terms of seismic design present a more pressing issue to human life. This risk has been seen in various earthquakes that have struck Italy recently, and subsequently, the codes have been altered to account for this underestimated danger. Structures built after these changes remain at risk and must be retrofitted depending on their use. This report centers around the Giovanni Michelucci Institute of Mathematics at the University of Bologna and the work required to modify the building so that it can withstand 60% of the current design requirements. The goal of this particular report is to verify the previous reports written in Italian and present an accurate analysis along with intervention suggestions for this particular building. The work began with an investigation into the previous sources and work to find out how the structure had been interpreted. After understanding the building, corrections were made where required, and the failing elements were organized graphically to more easily show where the building needed the most work. Once the critical zones were mapped, remediation techniques were tested on the top floor, and the modeling techniques and effects of the interventions were presented to assist in further work on the structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades the evolution of radio science has made it possible to infer the atmosphere composition, the surface and the internal structure of the planets. Since the arrival of the first landers on Mars it was possible to make accurate measurements of the dynamics of this planet; in this thesis we will focus on InSight, considering the data disclosed by the JPL relative to the period from November 26th, 2018 to August 15th, 2021. In particular, the Doppler and Range measurements conducted by the RISE (Rotation and Interior Structure Experiment) will be analyzed. Since the accuracy of these measurements was improved significantly the effects due to the atmosphere of Mars might be measured so it should thus be possible to obtain a better estimate of the parameters characterizing the rotational dynamic of Mars. A large part of this study will therefore be dedicated to the study, modeling, implementation and analysis of the atmosphere of Mars, in both its components: troposphere and ionosphere. Once the complete model of Mars had been built, i.e. including the atmosphere, it was then possible to analyze the residuals, obtained between the data of the measurements carried out and the values predicted by the developed model, in order to obtain an estimate of the rotational dynamic of Mars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mediterranean Sea is a semi-enclosed basin connected to the Atlantic Ocean through the narrow and shallow Strait of Gibraltar and further subdivided in two different sub-basins, the Eastern Mediterranean and the Western Mediterranean, connected through the Stait of Sicily. On annual basis, a net heat budget of −7 W/m2, combined with exceeding evaporation over precipation and runoff together with wind stress, is responsible for the antiestuarine character of the zonal thermoaline circulation. The outflow at Gibraltar Strait is mainly composed of Levantine Intermediate Water (LIW) and deep water masses formed in the Western Mediterranean Sea. The aim of this thesis is to validate and quantitatively assess the main routes of water masses composing the ouflow at Gibraltar Strait, using for the first time in the Mediterranean Sea a lagrangian interpretation of the eulerian velocity field produced from an eddy-resolving reanalysis dataset, spanning from 2000 to 2012. A lagrangian model named Ariane is used to map out three-dimensional trajectories in order to describe the pathways of water mass transport from the Strait of Sicily, the Gulf of Lyon and the Northern Tyrrhenian Sea to the Gibraltar Strait. Numerical experiments were carried out by seeding millions of particles in the Strait of Gibraltar and following them backwards in time to track the origins of water masses and transport exchanged between the different sections of the Mediterranean. Finally, the main routes of the intermediate and deep water masses are reconstructed from virtual particles trajectories, which highlight the role of the Western Mediterranean Deep Water (WMDW) as the main contributor to the Gibraltar Strait outflow. For the first time, the quantitative description of the flow of water masses coming from the Eastern Mediterranean towards the Gibraltar Strait is provided and a new route that directly links the Northern Tyrrhenian Sea to Gibralatr Strait has been detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a witness on the industrialization in Bologna, since its first generation was born in the late 1760, the Battiferro lock has been coping with the innovation that the city experienced throughout the centuries, until it has lost its functionality due to the technological development for which Bologna’s canals were gradually covered starting from the 1950s under Giuseppe Dozza ’s administration, as part of the reconstruction, reclamation and urban requalification that was carried out in the aftermath the World War II and which involved the whole city. The interest of the research carried out on this case study was primarily to reintroduce the landmark that is still intact, to what is considered to be the fourth generation of the industrial revolution, namely in the construction field, which is recognized as Construction 4.0, by means of the Historic (or Heritage) Information Modeling HBIM and Virtual Reality (VR) application. A scan-to-BIM approach was followed to create 3D as-built BIM model, as a first step towards the storytelling of the abandoned industrial built asset in VR environment, or as a seed for future applications such as Digital Twins (DT), heritage digital learning, sustainable impact studies, and/or interface with other interfaces such as GIS. Based on the HBIM product, examples of the primary BIM deliverables such as 2D layouts is given, then a workflow to VR is proposed and investigated the reliability of data and the type of users that may benefit of the VR experience, then the potential future development of the model is investigated, with comparison of a relatively similar experience in the UK.