3 resultados para Hydrogeology.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to provide a geochemical characterization of the Seehausen territory (a neighborhood) of Bremen, Germany. In this territory it is hosted a landfill of dredged sediments coming both from Bremerhaven (North See) and Bremen harbor (directly on the river Weser). For this reason this work has been focused also on possible impacts of the landfill on the groundwaters (shallow and deep aquifer). The Seehausen landfill uses the dewatering technique to manage the dredged sediments: incoming sediments are put into dewatering fields until they are completely dried (it takes almost a year). Then they are randomly sampled and analyzed: if the pollutants content is acceptable, sediments are treated with other materials and used instead of raw material for embankment, bricks, etc., otherwise they are disposed in the landfill. During this work it has been made a study of the natural geology and hydrogeology of the whole area of interest, especially because it is characterized by ancient natural salt deposits. Then, together with the Geological Survey of Bremen and the Harbor Authority of Bremen there have been identified all useful piezometers for a monitoring net around the landfill. During the sampling campaign there have been collected data of the principal anions and cations, physical parameters and stable water isotopes. Data analysis has been focused particularly on Cl, Na, SO4 and EC because these parameters might be helpful to attribute geochemical trends to the landfill or to a natural background. Furthermore dataloggers have been installed for a month in some piezometers and EC, pressure, dissolved oxygen and temperature data have been collected. Finally there has been made a deep comparison between current and historical data (1996 – 2011) and between old interpolation maps and current ones in order to see time trends of the aquifer geochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alburni Massif is the most important karstic area in southern Italy and It contains about 250 caves. Most of these caves are located on the plateau, between 1500 m a.s.l. and 700 m a.s.l., and only a few reach the underground streams that feed the springs and the deep aquifer. The main springs are Grotta di Pertosa-Auletta (CP1) and Auso spring (CP31), both located at 280 m a.s.l., the first on the south-eastern margin whereas the second on south-west margin, and the springs present in Castelcivita area, the Castelcivita-Ausino system (CP2) and Mulino di Castelcivita spring (CP865), located at 60 m a.s.l.. Some other secondary springs are present too. We have monitored Pertosa-Auletta’s spring with a multiparameter logger. This logger has registered data from November 2014 to December 2015 regarding water level, electric conductivity and temperature. The hydrodynamic monitoring has been supported by a sampling campaign in order to obtain chemical water analyses. The work was done from August 2014 to December 2015, not only at Pertosa but also at all the other main springs, and in some caves. It was possible to clarify the behavior of Pertosa-Auletta’s spring, almost exclusively fed by full charge conduits, only marginally affected by seasonal rains. Pertosa-Auletta showed a characteristic Mg/Ca ratio and Mg2+ enrichment, as demonstrated by its saturation index that always showed a dolomite saturation. All other spring have characteristic waters from a chemical point of view. In particular, it highlights the great balance between the components dissolved in the waters of Mulino’ spring opposed to the variability of the nearby Castelcivita-Ausino spring. Regarding the Auso spring the variable behavior in terms of discharge and chemistry is confirmed, greatly influenced by rainfall and, during drought periods, by full charge conduits. Rare element concentrations were also analyzed and allowed to characterize further the different waters. Based on all these data an updated hydrogeological map of the Alburni massif has been drawn, that defines in greater detail the hydrogeological complexes on the basis of lithologies, and therefore of their chemical characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.