7 resultados para Hydraulic and energy optimization

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente dissertazione investiga la possibilità di ottimizzare l’uso di energia a bordo di una nave per trasporto di prodotti chimici e petrolchimici. Il software sviluppato per questo studio può essere adattato a qualsiasi tipo di nave. Tale foglio di calcolo fornisce la metodologia per stimare vantaggi e miglioramenti energetici, con accuratezza direttamente proporzionale ai dati disponibili sulla configurazione del sistema energetico e sui dispositivi installati a bordo. Lo studio si basa su differenti fasi che permettono la semplificazione del lavoro; nell’introduzione sono indicati i dati necessari per svolgere un’accurata analisi ed è presentata la metodologia adottata. Inizialmente è fornita una spiegazione sul layout dell’impianto, sulle sue caratteristiche e sui principali dispositivi installati a bordo. Vengono dunque trattati separatamente i principali carichi, meccanico, elettrico e termico. In seguito si procede con una selezione delle principali fasi operative della nave: è seguito tale approccio in modo da comprendere meglio la ripartizione della richiesta di potenza a bordo della nave e il suo sfruttamento. Successivamente è svolto un controllo sul dimensionamento del sistema elettrico: ciò aiuta a comprendere se la potenza stimata dai progettisti sia assimilabile a quella effettivamente richiesta sulla nave. Si ottengono in seguito curve di carico meccanico, elettrico e termico in funzione del tempo per tutte le fasi operative considerate: tramite l’uso del software Visual Basic Application (VBA) vengono creati i profili di carico che possono essere gestiti nella successiva fase di ottimizzazione. L’ottimizzazione rappresenta il cuore di questo studio; i profili di potenza ottenuti dalla precedente fase sono gestiti in modo da conseguire un sistema che sia in grado di fornire potenza alla nave nel miglior modo possibile da un punto di vista energetico. Il sistema energetico della nave è modellato e ottimizzato mantenendo lo status quo dei dispositivi di bordo, per i quali sono considerate le configurazioni di “Load following”, “two shifts” e “minimal”. Una successiva investigazione riguarda l’installazione a bordo di un sistema di accumulo di energia termica, così da migliorare lo sfruttamento dell’energia disponibile. Infine, nella conclusione, sono messi a confronto i reali consumi della nave con i risultati ottenuti con e senza l’introduzione del sistema di accumulo termico. Attraverso la configurazione “minimal” è possibile risparmiare circa l’1,49% dell’energia totale consumata durante un anno di attività; tale risparmio è completamente gratuito poiché può essere raggiunto seguendo alcune semplici regole nella gestione dell’energia a bordo. L’introduzione di un sistema di accumulo termico incrementa il risparmio totale fino al 4,67% con un serbatoio in grado di accumulare 110000 kWh di energia termica; tuttavia, in questo caso, è necessario sostenere il costo di installazione del serbatoio. Vengono quindi dibattuti aspetti economici e ambientali in modo da spiegare e rendere chiari i vantaggi che si possono ottenere con l’applicazione di questo studio, in termini di denaro e riduzione di emissioni in atmosfera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globalization has increased the pressure on organizations and companies to operate in the most efficient and economic way. This tendency promotes that companies concentrate more and more on their core businesses, outsource less profitable departments and services to reduce costs. By contrast to earlier times, companies are highly specialized and have a low real net output ratio. For being able to provide the consumers with the right products, those companies have to collaborate with other suppliers and form large supply chains. An effect of large supply chains is the deficiency of high stocks and stockholding costs. This fact has lead to the rapid spread of Just-in-Time logistic concepts aimed minimizing stock by simultaneous high availability of products. Those concurring goals, minimizing stock by simultaneous high product availability, claim for high availability of the production systems in the way that an incoming order can immediately processed. Besides of design aspects and the quality of the production system, maintenance has a strong impact on production system availability. In the last decades, there has been many attempts to create maintenance models for availability optimization. Most of them concentrated on the availability aspect only without incorporating further aspects as logistics and profitability of the overall system. However, production system operator’s main intention is to optimize the profitability of the production system and not the availability of the production system. Thus, classic models, limited to represent and optimize maintenance strategies under the light of availability, fail. A novel approach, incorporating all financial impacting processes of and around a production system, is needed. The proposed model is subdivided into three parts, maintenance module, production module and connection module. This subdivision provides easy maintainability and simple extendability. Within those modules, all aspect of production process are modeled. Main part of the work lies in the extended maintenance and failure module that offers a representation of different maintenance strategies but also incorporates the effect of over-maintaining and failed maintenance (maintenance induced failures). Order release and seizing of the production system are modeled in the production part. Due to computational power limitation, it was not possible to run the simulation and the optimization with the fully developed production model. Thus, the production model was reduced to a black-box without higher degree of details.