6 resultados para Hybrid constraint methods

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report studied the effect of crumb rubber in the asphalt mixture. The mixtures were also having limestone filler as a modifier. Mastic and mortar (mastic-fine aggregate system) mixture having different quantities of crumb rubber and limestone filler modifiers have been tested in order to find the best rutting resistance combination with an acceptable stiffness. The rheological tests on bituminous mastics and mortars have done in the laboratories in Nottingham Transport Engineering Centre (NTEC) and University of Bologna (DICAM). In the second chapter, an extensive literature review about the binders, additives, asphalt mixtures, various modelling and testing methods have been reviewed. In the third chapter, the physical and rheological properties of the binders have been investigated using both traditional devices and DSRs. The forth chapter is dedicated to finding the behaviour of the modified mastics (Binder-modifier system) with different combinations. Five different combinations of crumb rubber and limestone filler mastic tested with various methods using Dynamic Shear Rheometers. In the fifth chapter, in order to find the effect of the modifiers in the rheological properties of the complete asphalt mixture, the fine aggregates added to the same mastic combinations. In this phase, the behaviour of the system so-called mortar; binder, rubber, filler and fine aggregates) has been studied using the DSR device and the traditional tests. The results show that using fine crumb rubber reduces the thermo sensibility of the mastic (Binder Bitumen System) and improves its elasticity. Limestone filler in the other hand increases the mixture stiffness at high Frequencies. Another important outcome of this research was that the rheological properties of the mortars were following the same trend of the mastics, therefore study the rheological properties of the mastic gives an upright estimation of the mortar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work proposes different approaches to extend the mathematical methods of supervisory energy management used in terrestrial environments to the maritime sector, that diverges in constraints, variables and disturbances. The aim is to find the optimal real-time solution that includes the minimization of a defined track time, while maintaining the classical energetic approach. Starting from analyzing and modelling the powertrain and boat dynamics, the energy economy problem formulation is done, following the mathematical principles behind the optimal control theory. Then, an adaptation aimed in finding a winning strategy for the Monaco Energy Boat Challenge endurance trial is performed via ECMS and A-ECMS control strategies, which lead to a more accurate knowledge of energy sources and boat’s behaviour. The simulations show that the algorithm accomplishes fuel economy and time optimization targets, but the latter adds huge tuning and calculation complexity. In order to assess a practical implementation on real hardware, the knowledge of the previous approaches has been translated into a rule-based algorithm, that let it be run on an embedded CPU. Finally, the algorithm has been tuned and tested in a real-world race scenario, showing promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was the development of a new detection method of partial discharge (PD) activity in the stator of an electrical hybrid supercar fed by a silicon carbide converter, for which detection with common methods make it very difficult to separate PD pulses from switching noise. This work focused on the analysis and detection of partial discharges making use of an antenna, a peak detector, and an oscilloscope capable of capturing the electromagnetic pulses emitted during PD activity. Validation of the proposed method was done by comparing the partial discharge inception voltage (PDIV) detected by this system with the one obtained from an optical method of proven accuracy, with different rise times and samples. Further development of this method, if proved successful on a full stator, can help increasing the overall reliability of the car, potentially allowing for real time detection of PD activity and predictive maintenance before failure of the insulation system in a hybrid vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation functions within neural networks play a crucial role in Deep Learning since they allow to learn complex and non-trivial patterns in the data. However, the ability to approximate non-linear functions is a significant limitation when implementing neural networks in a quantum computer to solve typical machine learning tasks. The main burden lies in the unitarity constraint of quantum operators, which forbids non-linearity and poses a considerable obstacle to developing such non-linear functions in a quantum setting. Nevertheless, several attempts have been made to tackle the realization of the quantum activation function in the literature. Recently, the idea of the QSplines has been proposed to approximate a non-linear activation function by implementing the quantum version of the spline functions. Yet, QSplines suffers from various drawbacks. Firstly, the final function estimation requires a post-processing step; thus, the value of the activation function is not available directly as a quantum state. Secondly, QSplines need many error-corrected qubits and a very long quantum circuits to be executed. These constraints do not allow the adoption of the QSplines on near-term quantum devices and limit their generalization capabilities. This thesis aims to overcome these limitations by leveraging hybrid quantum-classical computation. In particular, a few different methods for Variational Quantum Splines are proposed and implemented, to pave the way for the development of complete quantum activation functions and unlock the full potential of quantum neural networks in the field of quantum machine learning.