10 resultados para Human-machine systems
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.
Resumo:
Le moderne tecniche di imaging e i recenti sviluppi nel campo della visione computazionale consentono sempre più diffusamente l'utilizzo di metodi di image analysis, specialmente in ambito medico e biologico, permettendo un maggiore supporto sia alla diagnosi, sia alla ricerca. Il lavoro svolto in questa tesi si pone in un contesto di ricerca di carattere interdisciplinare, e riguarda il progetto e la realizzazione di un‘interfaccia grafica per l'analisi di colture batteriche geneticamente modificate, marcate con proteine fluorescenti (GFP), acquisite tramite un microscopio ad epifluorescenza. Nota la funzione di risposta del sistema di acquisizione delle immagini, l'analisi quantitativa delle colture batteriche è effettuata mediante la misurazione di proprietà legate all'intensità della risposta al marcatore fluorescente. L'interfaccia consente un'analisi sia globale dei batteri individuati nell'immagine, sia di singoli gruppi di batteri selezionati dall'utente, fornendo utili informazioni statistiche, sia in forma grafica che numerica. Per la realizzazione dell'interfaccia sono state adottate tecniche di ingegneria del software, con particolare enfasi alla interazione uomo-macchina e seguendo criteri di usability, al fine di consentire un corretto utilizzo dello strumento anche da parte di personale senza conoscenza in campo informatico.
Resumo:
Advancements in technology have enabled increasingly sophisticated automation to be introduced into the flight decks of modern aircraft. Generally, this automation was added to accomplish worthy objectives such as reducing flight crew workload, adding additional capability, or increasing fuel economy. Automation is necessary due to the fact that not all of the functions required for mission accomplishment in today’s complex aircraft are within the capabilities of the unaided human operator, who lacks the sensory capacity to detect much of the information required for flight. To a large extent, these objectives have been achieved. Nevertheless, despite all the benefits from the increasing amounts of highly reliable automation, vulnerabilities do exist in flight crew management of automation and Situation Awareness (SA). Issues associated with flight crew management of automation include: • Pilot understanding of automation’s capabilities, limitations, modes, and operating principles and techniques. • Differing pilot decisions about the appropriate automation level to use or whether to turn automation on or off when they get into unusual or emergency situations. • Human-Machine Interfaces (HMIs) are not always easy to use, and this aspect could be problematic when pilots experience high workload situations. • Complex automation interfaces, large differences in automation philosophy and implementation among different aircraft types, and inadequate training also contribute to deficiencies in flight crew understanding of automation.
Resumo:
Al giorno d'oggi, l'industry 4.0 è un movimento sempre più prominente che induce ad equipaggiare gli impianti industriali con avanzate infrastrutture tecnologiche digitali, le quali operano sinergicamente con l'impianto, al fine di controllare ed aumentare la produttività, monitorare e prevenire i futuri guasti, ed altro ancora. In questo ambito, gli utenti sono parte integrante della struttura produttiva, in cui ricoprono ruoli strategici e flessibili, collaborano fra loro e con le macchine, con l’obiettivo di affrontare e risolvere proattivamente una vasta gamma di problemi complessi. In particolare, la customer assistance nel settore industriale può certamente variare in relazione a molteplici elementi: il tipo di produzione e le caratteristiche del prodotto; l'organizzazione ed infrastruttura aziendale interna; la quantità di risorse disponibili che possono essere impiegate; il grado di importanza ricoperto dalla customer assistance nel settore industriale di riferimento; altri eventuali fattori appartenenti ad un dominio specifico. Per queste ragioni, si è cercato di individuare e categorizzare nel modo più accurato possibile, il lavoro svolto in questo elaborato ed il contesto nel quale è stato sviluppato. In questa tesi, viene descritta un'applicazione web per erogare assistenza al cliente in ambito di industria 4.0, attraverso il paradigma di ticketing o ticket di supporto/assistenza. Questa applicazione è integrata nel sistema Mentor, il quale è attivo già da anni nel settore industriale 4.0. Il progetto Mentor è una suite di applicazioni cloud-based creata dal gruppo Bucci Industries, una multinazionale attiva nell'industria e nell'automazione con sede a Faenza. In questo caso di studio, si presenta la progettazione ed implementazione della parte front-end del suddetto sistema di assistenza, il quale è integrato ed interconnesso con un paio di applicazioni tipiche di industria 4.0, presenti nella stessa suite di applicazioni.
Resumo:
Artificial Intelligence (AI) is gaining ever more ground in every sphere of human life, to the point that it is now even used to pass sentences in courts. The use of AI in the field of Law is however deemed quite controversial, as it could provide more objectivity yet entail an abuse of power as well, given that bias in algorithms behind AI may cause lack of accuracy. As a product of AI, machine translation is being increasingly used in the field of Law too in order to translate laws, judgements, contracts, etc. between different languages and different legal systems. In the legal setting of Company Law, accuracy of the content and suitability of terminology play a crucial role within a translation task, as any addition or omission of content or mistranslation of terms could entail legal consequences for companies. The purpose of the present study is to first assess which neural machine translation system between DeepL and ModernMT produces a more suitable translation from Italian into German of the atto costitutivo of an Italian s.r.l. in terms of accuracy of the content and correctness of terminology, and then to assess which translation proves to be closer to a human reference translation. In order to achieve the above-mentioned aims, two human and automatic evaluations are carried out based on the MQM taxonomy and the BLEU metric. Results of both evaluations show an overall better performance delivered by ModernMT in terms of content accuracy, suitability of terminology, and closeness to a human translation. As emerged from the MQM-based evaluation, its accuracy and terminology errors account for just 8.43% (as opposed to DeepL’s 9.22%), while it obtains an overall BLEU score of 29.14 (against DeepL’s 27.02). The overall performances however show that machines still face barriers in overcoming semantic complexity, tackling polysemy, and choosing domain-specific terminology, which suggests that the discrepancy with human translation may still be remarkable.
Resumo:
The objective of the thesis project, developed within the Line Control & Software Engineering team of G.D company, is to analyze and identify the appropriate tool to automate the HW configuration process using Beckhoff technologies by importing data from an ECAD tool. This would save a great deal of time, since the I/O topology created as part of the electrical planning is presently imported manually in the related SW project of the machine. Moreover, a manual import is more error-prone because of human mistake than an automatic configuration tool. First, an introduction about TwinCAT 3, EtherCAT and Automation Interface is provided; then, it is analyzed the official Beckhoff tool, XCAD Interface, and the requirements on the electrical planning to use it: the interface is realized by means of the AutomationML format. Finally, due to some limitations observed, the design and implementation of a company internal tool is performed. Tests and validation of the tool are performed on a sample production line of the company.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.
Resumo:
Computer-assisted translation (or computer-aided translation or CAT) is a form of language translation in which a human translator uses computer software in order to facilitate the translation process. Machine translation (MT) is the automated process by which a computerized system produces a translated text or speech from one natural language to another. Both of them are leading and promising technologies in the translation industry; it therefore seems important that translation students and professional translators become familiar with this relatively new types of technology. Whether used together, not only might these two different types of systems reduce translation time, but also lead to a further improvement in the field of translation technologies. The dissertation consists of four chapters. The first one surveys the chronological development of MT and CAT tools, the emergence of pre-editing, post-editing and controlled language and the very last frontiers in this sector. The second one provide a general overview on the four main CAT tools that are used nowadays and tested hereto. The third chapter is dedicated to the experimentations that have been conducted in order to analyze and evaluate the performance of the four integrated systems that are the core subject of this dissertation. Finally, the fourth chapter deals with the issue of terminological equivalence in interlinguistic translation. The purpose of this dissertation is not to provide an objective and definitive solution to the complex issues that arise at any time in the field of translation technologies, this aim being well away from being achieved, but to supply information about the limits and potentiality that are typical of those instruments which are now essential to any professional translator.
Resumo:
Il cancro della prostata (PCa) è il tumore maligno non-cutaneo più diffuso tra gli uomini ed è il secondo tumore che miete più vittime nei paesi occidentali. La necessità di nuove tecniche non invasive per la diagnosi precoce del PCa è aumentata negli anni. 1H-MRS (proton magnetic resonance spectroscopy) e 1H-MRSI (proton magnetic resonance spectroscopy imaging) sono tecniche avanzate di spettroscopia in risonanza magnetica che permettono di individuare presenza di metaboliti come citrato, colina, creatina e in alcuni casi poliammine in uno o più voxel nel tessuto prostatico. L’abbondanza o l’assenza di uno di questi metaboliti rende possibile discriminare un tessuto sano da uno patologico. Le tecniche di spettroscopia RM sono correntemente utilizzate nella pratica clinica per cervello e fegato, con l’utilizzo di software dedicati per l’analisi degli spettri. La quantificazione di metaboliti nella prostata invece può risultare difficile a causa del basso rapporto segnale/rumore (SNR) degli spettri e del forte accoppiamento-j del citrato. Lo scopo principale di questo lavoro è di proporre un software prototipo per la quantificazione automatica di citrato, colina e creatina nella prostata. Lo sviluppo del programma e dei suoi algoritmi è stato portato avanti all’interno dell’IRST (Istituto Romagnolo per lo Studio e la cura dei Tumori) con l’aiuto dell’unità di fisica sanitaria. Il cuore del programma è un algoritmo iterativo per il fit degli spettri che fa uso di simulazioni MRS sviluppate con il pacchetto di librerie GAMMA in C++. L’accuratezza delle quantificazioni è stata testata con dei fantocci realizzati all’interno dei laboratori dell’istituto. Tutte le misure spettroscopiche sono state eseguite con il nuovo scanner Philips Ingenia 3T, una delle machine di risonanza magnetica più avanzate per applicazioni cliniche. Infine, dopo aver eseguito i test in vitro sui fantocci, sono stati acquisiti gli spettri delle prostate di alcuni volontari sani, per testare se il programma fosse in grado di lavorare in condizioni di basso SNR.