10 resultados para Hilbert symbol
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi ci si occuperà di presentare alcuni aspetti salienti della teoria spettrale per gli operatori limitati negli spazi di Hilbert. Nel primo capitolo verranno presentate alcune nozioni fondamentali di analisi funzionale, necessarie per lo studio degli operatori. Il secondo capitolo si occupa invece di analizzare la teoria spettrale per operatori compatti. In particolare, verrà presentato il Teorema Spettrale per Operatori Normali Compatti e il Teorema dell'Alternativa di Fredholm. In seguito verrà applicata tale teoria alla risolubilità del problema di Dirichlet. Nel terzo capitolo verrà esteso quanto ottenuto per gli operatori compatti ad operatori limitati autoaggiunti e per gli operatori normali limitati, passando attraverso le famiglie spettrali.
Resumo:
The Hilbert transform is an important tool in both pure and applied mathematics. It is largely used in the field of signal processing. Lately has been used in mathematical finance as the fast Hilbert transform method is an efficient and accurate algorithm for pricing discretely monitored barrier and Bermudan style options. The purpose of this report is to show the basic properties of the Hilbert transform and to check the domain of definition of this operator.
Resumo:
Questo elaborato presenta gli elementi di base della Teoria degli Spazi di Hilbert, con particolare attenzione al Teorema della Proiezione sui convessi e ai sistemi ortonormali completi.
Resumo:
Questo lavoro prende in esame lo schema di Hilbert di punti di C^2, il quale viene descritto assieme ad alcune sue proprietà, ad esempio la sua struttura hyper-kahleriana. Lo scopo della tesi è lo studio del polinomio di Poincaré di tale schema di Hilbert: ciò che si ottiene è una espressione del tipo serie di potenze, la quale è un caso particolare di una formula molto più generale, nota con il nome di formula di Goettsche.
Resumo:
La trattazione che segue fornisce un'introduzione agli operatori lineari. Il primo capitolo contiene dei cenni sugli spazi di Hilbert di dimensione infinita, in modo da poter lavorare con operatori definiti non solo su spazi finito dimensionali, che sono generalmente rappresentati da matrici. Nel secondo capitolo si prosegue con lo studio degli operatori lineari limitati, proponendo come esempio l'operatore di proiezione. Viene definito anche l'importante concetto di operatore aggiunto, generalizzato nel capitolo successivo. Il capitolo finale tratta gli operatori non limitati, che possono essere analizzati con più facilità se soddisfano una proprietà topologica, che è la chiusura. Si affronta anche il concetto di spettro di un operatore, soprattutto nel caso di un operatore autoaggiunto, concludendo con l' esempio di un importante operatore, cioè l'operatore differenziale, fondamentale in meccanica quantistica.