5 resultados para Higher-Order Networks

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main task of this work is to present a concise survey on the theory of certain function spaces in the contexts of Hörmander vector fields and Carnot Groups, and to discuss briefly an application to some polyharmonic boundary value problems on Carnot Groups of step 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis proposes a solution to the approach problem in case of unknown severe microburst wind shear for a fixed-wing aircraft, accounting for both longitudinal and lateral dynamics. The adaptive controller design for wind rejection is also addressed, exploiting the wind estimation provided by suitable estimators. It is able to successfully complete the final approach phase even in presence of wind shear, and at the same time aerodynamic envelope protection is retained. The adaptive controller for wind compensation has been designed by a backstepping approach and feedback linearization for time-varying systems. The wind shear components have been estimated by higher-order sliding mode schemes. At the end of this work the results are provided, an autonomous final approach in presence of microburst is discussed, performances are analyzed, and estimation of the microburst characteristics from telemetry data is examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monomer-dimer models are amongst the models in statistical mechanics which found application in many areas of science, ranging from biology to social sciences. This model describes a many-body system in which monoatomic and diatomic particles subject to hard-core interactions get deposited on a graph. In our work we provide an extension of this model to higher-order particles. The aim of our work is threefold: first we study the thermodynamic properties of the newly introduced model. We solve analytically some regular cases and find that, differently from the original, our extension admits phase transitions. Then we tackle the inverse problem, both from an analytical and numerical perspective. Finally we propose an application to aggregation phenomena in virtual messaging services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.