4 resultados para High-dimensional indexing
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.
Resumo:
Il presente lavoro di tesi si inserisce nell’ambito della classificazione di dati ad alta dimensionalità, sviluppando un algoritmo basato sul metodo della Discriminant Analysis. Esso classifica i campioni attraverso le variabili prese a coppie formando un network a partire da quelle che hanno una performance sufficientemente elevata. Successivamente, l’algoritmo si avvale di proprietà topologiche dei network (in particolare la ricerca di subnetwork e misure di centralità di singoli nodi) per ottenere varie signature (sottoinsiemi delle variabili iniziali) con performance ottimali di classificazione e caratterizzate da una bassa dimensionalità (dell’ordine di 101, inferiore di almeno un fattore 103 rispetto alle variabili di partenza nei problemi trattati). Per fare ciò, l’algoritmo comprende una parte di definizione del network e un’altra di selezione e riduzione della signature, calcolando ad ogni passaggio la nuova capacità di classificazione operando test di cross-validazione (k-fold o leave- one-out). Considerato l’alto numero di variabili coinvolte nei problemi trattati – dell’ordine di 104 – l’algoritmo è stato necessariamente implementato su High-Performance Computer, con lo sviluppo in parallelo delle parti più onerose del codice C++, nella fattispecie il calcolo vero e proprio del di- scriminante e il sorting finale dei risultati. L’applicazione qui studiata è a dati high-throughput in ambito genetico, riguardanti l’espressione genica a livello cellulare, settore in cui i database frequentemente sono costituiti da un numero elevato di variabili (104 −105) a fronte di un basso numero di campioni (101 −102). In campo medico-clinico, la determinazione di signature a bassa dimensionalità per la discriminazione e classificazione di campioni (e.g. sano/malato, responder/not-responder, ecc.) è un problema di fondamentale importanza, ad esempio per la messa a punto di strategie terapeutiche personalizzate per specifici sottogruppi di pazienti attraverso la realizzazione di kit diagnostici per l’analisi di profili di espressione applicabili su larga scala. L’analisi effettuata in questa tesi su vari tipi di dati reali mostra che il metodo proposto, anche in confronto ad altri metodi esistenti basati o me- no sull’approccio a network, fornisce performance ottime, tenendo conto del fatto che il metodo produce signature con elevate performance di classifica- zione e contemporaneamente mantenendo molto ridotto il numero di variabili utilizzate per questo scopo.
Resumo:
In this work we study a polyenergetic and multimaterial model for the breast image reconstruction in Digital Tomosynthesis, taking into consideration the variety of the materials forming the object and the polyenergetic nature of the X-rays beam. The modelling of the problem leads to the resolution of a high-dimensional nonlinear least-squares problem that, due to its nature of inverse ill-posed problem, needs some kind of regularization. We test two main classes of methods: the Levenberg-Marquardt method (together with the Conjugate Gradient method for the computation of the descent direction) and two limited-memory BFGS-like methods (L-BFGS). We perform some experiments for different values of the regularization parameter (constant or varying at each iteration), tolerances and stop conditions. Finally, we analyse the performance of the several methods comparing relative errors, iterations number, times and the qualities of the reconstructed images.
Resumo:
Hybrid Organic-Inorganic Halide Perovskites (HOIPs) include a large class of materials described with the general formula ABX3, where A is an organic cation, B an inorganic cation and X an halide anion. HOIPs show excellent optoelectronic characteristics such as tunable band gap, high adsorption coefficient and great mobility life-time. A subclass of these materials, the so-called two- dimensional (2D) layered HOIPs, have emerged as potential alternatives to traditional 3D analogs to enhance the stability and increase performance of perovskite devices, with particular regard in the area of ionizing radiation detectors, where these materials have reached truly remarkable milestones. One of the key challenges for future development of efficient and stable 2D perovskite X-ray detector is a complete understanding of the nature of defects that lead to the formation of deep states. Deep states act as non-radiative recombination centers for charge carriers and are one of the factors that most hinder the development of efficient 2D HOIPs-based X-ray detectors. In this work, deep states in PEA2PbBr4 were studied through Photo-Induced Current Transient Spectroscopy (PICTS), a highly sensitive spectroscopic technique capable of detecting the presence of deep states in highly resistive ohmic materials, and characterizing their activation energy, capture cross section and, under stringent conditions, the concentration of these states. The evolution of deep states in PEA 2 PbBr 4 was evaluated after exposure of the material to high doses of ionizing radiation and during aging (one year). The data obtained allowed us to evaluate the contribution of ion migration in PEA2PbBr4. This work represents an important starting point for a better understanding of transport and recombination phenomena in 2D perovskites. To date, the PICTS technique applied to 2D perovskites has not yet been reported in the scientific literature.