5 resultados para Heavy Vehicles

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis aims to give a general view of pavement types all over the world, by showing the different characteristics of each one and its different life steps starting from construction, passing by maintenance and arriving until recycling phase. The flexible pavement took the main part of this work because it has been used in the last part of this thesis to design a project of a rural road. This project is located in the province of Bologna-Italy (‘Comune di Argelato’, 26 km in the north of Bologna), and has 5677, 81 m of length. A pavement design was made using the program BISAR 3.0 and a fatigue life study was made, also, in order to estimate the number of loads (in terms of heavy vehicles axle) to cause road’s failure . An alignment design was made for this project and a safety study was established in order to check if the available sight distance at curves respects the safety norms or not, by comparing it to the stopping sight distance. Different technical sheets are demonstrated and several cases are discussed in order to clarify the main design principles and underline the main hazardous cases to be avoided especially at intersection. This latter, its type’s choice depends on several factors in order to make the suitable design according to the environmental data. At this part of the road, the safety is a primordial point due to the high accident rate in this zone. For this reason, different safety aspects are discussed especially at roundabouts, signalized intersections, and also some other common intersection types. The design and the safety norms are taken with reference to AASHTO (American Association of State Highway and Transportation Officials), ACT (Transportation Association of Canada), and also according to Italian norms (Decreto Ministeriale delle Starde).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The advent of the hydrogen economy has already been predicted but it does not represent a tangible reality yet. However, decarbonizing the global economy and particularly the energy sector is vital to limit global warming and reduce the incumbent environmental problems. Hydrogen is a promising zero-emission fuel that could replace traditional fossil fuels, playing a key role in the transition towards a more sustainable economy. At present, hydrogen-powered cars are already spread worldwide and the deployment of hydrogen buses seems to be the next goal in the decarbonization process of the transportation sector. In contrast with the undeniable benefits introduced by the use of this alternative fuel, given its hazardous properties, safety is a topic of high concern. The present study concerns the evaluation of the risks linked to the on board storage of hydrogen on hydrogen-powered buses in case of road accident. Currently, hydrogen can be stored on board as a high-pressure gas, as a cryogenic liquid or in cryo-compressed form. Those solutions are compared from a safety point of view. First, the final accidental scenarios that could follow the release of the fuel in case of a road crash are pointed out. Secondly, threshold values for the hazardous effects of each scenario are fixed and the corresponding damage distances are calculated thanks to the use of the software PHAST 8.4. Finally, indicators are quantified to compare the different options. Results are discussed to find out the safer solution and to evaluate whether the replacement of fossil fuels with hydrogen introduces new safety issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi mi occupo di spiegare come si comportano i veicoli autonomi per prendere tutte le decisioni e come i dati dei sensori di ogni auto vengono condivisi con la flotta di veicoli