2 resultados para Heating from central stations.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study the population structure and connectivity of the Mediterranean and Atlantic Raja clavata (L., 1758) were investigated by analyzing the genetic variation of six population samples (N = 144) at seven nuclear microsatellite loci. The genetic dataset was generated by selecting population samples available in the tissue databases of the GenoDREAM laboratory (University of Bologna) and of the Department of Life Sciences and Environment (University of Cagliari), all collected during past scientific surveys (MEDITS, GRUND) from different geographical locations in the Mediterranean basin and North-east Atlantic sea, as North Sea, Sardinian coasts, Tuscany coasts and Cyprus Island. This thesis deals with to estimate the genetic diversity and differentiation among 6 geographical samples, in particular, to assess the presence of any barrier (geographic, hydrogeological or biological) to gene flow evaluating both the genetic diversity (nucleotide diversity, observed and expected heterozygosity, Hardy- Weinberg equilibrium analysis) and population differentiation (Fst estimates, population structure analysis). In addition to molecular analysis, quantitative representation and statistical analysis of morphological individuals shape are performed using geometric morphometrics methods and statistical tests. Geometric coordinates call landmarks are fixed in 158 individuals belonging to two population samples of Raja clavata and in population samples of closely related species, Raja straeleni (cryptic sibling) and Raja asterias, to assess significant morphological differences at multiple taxonomic levels. The results obtained from the analysis of the microsatellite dataset suggested a geographic and genetic separation between populations from Central-Western and Eastern Mediterranean basins. Furthermore, the analysis also showed that there was no separation between geographic samples from North Atlantic Ocean and central-Western Mediterranean, grouping them to a panmictic population. The Landmark-based geometric morphometry method results showed significant differences of body shape able to discriminate taxa at tested levels (from species to populations).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing number of extreme rainfall events, combined with the high population density and the imperviousness of the land surface, makes urban areas particularly vulnerable to pluvial flooding. In order to design and manage cities to be able to deal with this issue, the reconstruction of weather phenomena is essential. Among the most interesting data sources which show great potential are the observational networks of private sensors managed by citizens (crowdsourcing). The number of these personal weather stations is consistently increasing, and the spatial distribution roughly follows population density. Precisely for this reason, they perfectly suit this detailed study on the modelling of pluvial flood in urban environments. The uncertainty associated with these measurements of precipitation is still a matter of research. In order to characterise the accuracy and precision of the crowdsourced data, we carried out exploratory data analyses. A comparison between Netatmo hourly precipitation amounts and observations of the same quantity from weather stations managed by national weather services is presented. The crowdsourced stations have very good skills in rain detection but tend to underestimate the reference value. In detail, the accuracy and precision of crowd- sourced data change as precipitation increases, improving the spread going to the extreme values. Then, the ability of this kind of observation to improve the prediction of pluvial flooding is tested. To this aim, the simplified raster-based inundation model incorporated in the Saferplaces web platform is used for simulating pluvial flooding. Different precipitation fields have been produced and tested as input in the model. Two different case studies are analysed over the most densely populated Norwegian city: Oslo. The crowdsourced weather station observations, bias-corrected (i.e. increased by 25%), showed very good skills in detecting flooded areas.