10 resultados para Hardware-in-the-loop,air spring
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this work, a Hardware-in-the-loop test bench is designed. The bench is used to test the behaviour of an electronic control unit used in Maserati to control the dynamics of an air spring system. First the mathematical model of the plant has been defined, then the simulation enviroment and the test environment have been set up. The performed tests succesfully highlighted some bugs in the device under test.
Resumo:
Isolated DC-DC converters play a significant role in fast charging and maintaining the variable output voltage for EV applications. This study aims to investigate the different Isolated DC-DC converters for onboard and offboard chargers, then, once the topology is selected, study the control techniques and, finally, achieve a real-time converter model to accomplish Hardware-In-The-Loop (HIL) results. Among the different isolated DC-DC topologies, the Dual Active Bridge (DAB) converter has the advantage of allowing bidirectional power flow, which enables operating in both Grid to Vehicle (G2V) and Vehicle to Grid (V2G) modalities. Recently, DAB has been used in the offboard chargers for high voltage applications due to SiC and GaN MOSFETs; this new technology also allows the utilization of higher switching frequencies. By empowering soft switching techniques to reduce switching losses, higher switching frequency operation is possible in DAB. There are four phase shift control techniques for the DAB converter. They are Single Phase shift, Extended Phase shift, Dual Phase shift, Triple Phase shift controls. This thesis considers two control strategies; Single-Phase, and Dual-Phase shifts, to understand the circulating currents, power losses, and output capacitor size reduction in the DAB. Hardware-In-The-Loop (HIL) experiments are carried out on both controls with high switching frequencies using the PLECS software tool and the RT box supporting the PLECS. Root Mean Square Error is also calculated for steady-state values of output voltage with different sampling frequencies in both the controls to identify the achievable sampling frequency in real-time. DSP implementation is also executed to emulate the optimized DAB converter design, and final real-time simulation results are discussed for both the Single-Phase and Dual-Phase shift controls.
Resumo:
This master's thesis investigates different aspects of Dual-Active-Bridge (DAB) Converter and extends aspects further to Multi-Active-Bridges (MAB). The thesis starts with an overview of the applications of the DAB and MAB and their importance. The analytical part of the thesis includes the derivation of the peak and RMS currents, which is required for finding the losses present in the system. The power converters, considered in this thesis are DAB, Triple-Active Bridge (TAB) and Quad-Active Bridge (QAB). All the theoretical calculations are compared with the simulation results from PLECS software for identifying the correctness of the reviewed and developed theory. The Hardware-in-the-Loop (HIL) simulation is conducted for checking the control operation in real-time with the help of the RT box from the Plexim. Additionally, as in real systems digital signal processor (DSP), system-on-chip or field programmable gate array is employed for the control of the power electronic systems, and the execution of the control in the real-time simulation (RTS) conducted is performed by DSP.
Resumo:
The study analyses the calibration process of a newly developed high-performance plug-in hybrid electric passenger car powertrain. The complexity of modern powertrains and the more and more restrictive regulations regarding pollutant emissions are the primary challenges for the calibration of a vehicle’s powertrain. In addition, the managers of OEM need to know as earlier as possible if the vehicle under development will meet the target technical features (emission included). This leads to the necessity for advanced calibration methodologies, in order to keep the development of the powertrain robust, time and cost effective. The suggested solution is the virtual calibration, that allows the tuning of control functions of a powertrain before having it built. The aim of this study is to calibrate virtually the hybrid control unit functions in order to optimize the pollutant emissions and the fuel consumption. Starting from the model of the conventional vehicle, the powertrain is then hybridized and integrated with emissions and aftertreatments models. After its validation, the hybrid control unit strategies are optimized using the Model-in-the-Loop testing methodology. The calibration activities will proceed thanks to the implementation of a Hardware-in-the-Loop environment, that will allow to test and calibrate the Engine and Transmission control units effectively, besides in a time and cost saving manner.
Resumo:
L'ALMATracker è un sistema di puntamento per la stazione di terra di ALMASat-1. La sua configurazione non segue la classica Azimuth-Elevazione, bensì utilizza gli assi α-β per evitare punti di singolarità nelle posizioni vicino allo zenit. Ancora in fase di progettazione, utilizzando in congiunta SolidWorks e LabVIEW si è creato un Software-in-the-loop per la sua verifica funzionale, grazie all'utilizzo del relativamente nuovo pacchetto NI Softmotion. Data la scarsa esperienza e documentazione che si hanno su questo recente tool, si è prima creato un Case Study che simulasse un sistema di coordinate cilindriche in modo da acquisire competenza. I risultati conseguiti sono poi stati sfruttati per la creazione di un SIL per la simulazione del movimento dell'ALMATracker. L'utilizzo di questa metodologia di progettazione non solo ha confermato la validità del design proposto, ma anche evidenziato i problemi e le potenzialità che caratterizzano questo pacchetto software dandone un analisi approfondita.
Resumo:
Si riporta inizialmente un’analisi tecnica dell’autopilota Ardupilot, utilizzato con il firmware Arduplane, che predispone la scheda all’utilizzo specifico su velivoli senza pilota ad ala fissa. La parte sostanziale della tesi riguarda invece lo studio delle leggi di controllo implementate su Arduplane e la loro modellazione, assieme ad altre parti del codice, in ambiente Matlab Simulink. Il sistema di controllo creato, chiamato Attitude Flight System, viene verificato con la tecnica del Software In the Loop in un simulatore di volo virtuale modellato anch’esso in Simulink, si utilizza la dinamica di un velivolo UAV di prova e il software FlightGear per l’ambiente grafico. Di fondamentale importanza è la verifica della compatibilità fra il firmware originale e il codice generato a partire dai modelli Simulink, verifica effettuata mediante test di tipo Hardware in the Loop. L’ultima parte della tesi descrive le prove di volo svolte per verificare le prestazioni della scheda su un aeromodello trainer.
Resumo:
Evoluzione di un sistema Hardware in the Loop per l'automazione della guida di motoveicoli su banco a rulli. Questo sistema HIL, simulando un certo tipo di condizioni, permette di svolgere test su strategia centralina, implementate per il controllo motore.
Resumo:
This thesis studies the state-of-the-art of phasor measurement units (PMUs) as well as their metrological requirements stated in the IEEE C37.118.1 and C37.118.2 Standards for guaranteeing correct measurement performances. Communication systems among PMUs and their possible applicability in the field of power quality (PQ) assessment are also investigated. This preliminary study is followed by an analysis of the working principle of real-time (RT) simulators and the importance of hardware-in-the-loop (HIL) implementation, examining the possible case studies specific for PMUs, including compliance tests which are one of the most important parts. The core of the thesis is focused on the implementation of a PMU model in the IEEE 5-bus network in Simulink and in the validation of the results using OPAL RT-4510 as a real-time simulator. An initial check allows one to get an idea about the goodness of the results in Simulink, comparing the PMU data with respect to the load-flow steady-state information. In this part, accuracy indices are also calculated for both voltage and current synchrophasors. The following part consists in the implementation of the same code in OPAL-RT 4510 simulator, after which an initial analysis is carried out in a qualitative way in order to get a sense of the goodness of the outcomes. Finally, the confirmation of the results is based on an examination of the attained voltage and current synchrophasors and accuracy indices coming from Simulink models and from OPAL system, using a Matlab script. This work also proposes suggestions for an upcoming operation of PMUs in a more complex system as the Digital Twin (DT) in order to improve the performances of the already-existing protection devices of the distribution system operator (DSO) for a future enhancement of power systems reliability.