2 resultados para Harbour porpoise
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A Non-Indigenous Species (NIS) is defined as an organism, introduced outside its natural past or present range of distribution by humans, that successfully survives, reproduces, and establish in the new environment. Harbors and tourist marinas are considered NIS hotspots, as they are departure and arrival points for numerous vessels and because of the presence of free artificial substrates, which facilitate colonization by NIS. To early detect the arrival of new NIS, monitoring benthic communities in ports is essential. Autonomous Reef Monitoring Structures (ARMS) are standardized passive collectors that are used to assess marine benthic communities. Here we use an integrative approach based on multiple 3-month ARMS deployment (from April 2021 to October 2022) to characterize the benthic communities (with a focus on NIS) of two sites: a commercial port (Harbor) and a touristic Marina (Marina) of Ravenna. The colonizing sessile communities were assessed using percentage coverage of the taxa trough image analyses and vagile fauna (> 2 mm) was identified morphologically using a stereomicroscope and light microscope. Overall, 97 taxa were identified and 19 of them were NIS. All NIS were already observed in port environments in the Mediterranean Sea, but for the first time the presence of the polychaete Schistomeringos cf. japonica (Annenkova, 1937) was observed; however molecular analysis is needed to confirm its identity. Harbor and Marina host significantly different benthic communities, with significantly different abundance depending on the sampling period. While the differences between sites are related to their different environmental characteristic and their anthropogenic pressures, differences among times seems related to the different life cycle of the main abundant species. This thesis evidenced that ARMS, together with integrative taxonomic approaches, represent useful tools to early detect NIS and could be used for a long-term monitoring of their presence.
Resumo:
Food items and nematode parasites were identified from the stomachs of 42 individuals of Phocoena phocoena, 6 of Lagenorhynchus acutus and 8 of L. albirostris stranded off the coastal waters of Northern Scotland between 2004 and 2014. Post-mortem examinations have revealed heavy parasitic worm burdens. Four nematode species complex as Anisakis spp., Contracaeucum spp., Pseudoterronova spp., and Hysterothylacium spp. were recorded. Data on presence of the anisakid species in cetaceans, reported a significative relationship between the presence of Hysterothylacium and the month of host stranding; suggesting a decrease of larval H. aduncum abundance in the period between April and August due to a seasonal effect related to prey availability. Similarly, the parasite burden of the all anisakid genera was related to the year fraction of stranding, and a relationship statistically significant was found just for L. albirostris with an increase between April and October. This finding is explained by a seasonality in occurrence of white-beaked dolphins, with a peak during August, that might be related to movements of shared prey species and competition with other species (Tursiops truncatus). Geographical differences were observed in parasites number of all anisakid species, which was the highest in cetaceans from the East area and lowest in the North coast. The parasites number also increased significantly with the length of the animal and during the year, but with a significant seasonal pattern only for P. phocoena. Regarding diet composition, through a data set consisting of 34 harbour porpoises and 1 Atlantic white-sided dolphins, we found a positive association between parasite number and the cephalopods genus Alloteuthis. This higher level of parasite infection in squid from this area, is probably due to a quantitative distribution of infective forms in squid prey, an abundance of the final host and age or size maturity of squid.