2 resultados para Happening
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
With the development of the embedded application and driving assistance systems, it becomes relevant to develop parallel mechanisms in order to check and to diagnose these new systems. In this thesis we focus our research on one of this type of parallel mechanisms and analytical redundancy for fault diagnosis of an automotive suspension system. We have considered a quarter model car passive suspension model and used a parameter estimation, ARX model, method to detect the fault happening in the damper and spring of system. Moreover, afterward we have deployed a neural network classifier to isolate the faults and identifies where the fault is happening. Then in this regard, the safety measurements and redundancies can take into the effect to prevent failure in the system. It is shown that The ARX estimator could quickly detect the fault online using the vertical acceleration and displacement sensor data which are common sensors in nowadays vehicles. Hence, the clear divergence is the ARX response make it easy to deploy a threshold to give alarm to the intelligent system of vehicle and the neural classifier can quickly show the place of fault occurrence.
Resumo:
The goal of the research is to provide an overview of those factors that play a major role in structural failures and also to focus on the importance that bracing has in construction accidents. A temporary bracing system is important to construction safety, yet it is often neglected. Structural collapses often occur due to the insufficient support of loads that are applied at the time of failure. The structural load is usually analyzed by conceiving the whole structure as a completed entity, and there is frequently a lack of design or proper implementation of systems that can provide stability during construction. Often, the specific provisions and requirements of temporary bracing systems are left to the workers on the job site that may not have the qualifications or expertise for proper execution. To effectively see if bracing design should get more attention in codes and standards, failures which could have been avoided with the presence and/or the correct design of a bracing system were searched and selected among a variety of cases existing in the engineering literature. Eleven major cases were found, which span in a time frame of almost 70 years, clearly showing that the topic should get more attention. The case studies are presented in chronological order and in a systematic way. The failed structure is described in its design components and the sequence of failure is reconstructed. Then, the causes and failure mechanism are presented. Advice on how to avoid similar failures from happening again and hypothetic solutions which could have prevented the collapses are identified. The findings shows that insufficient or nonexistent bracing mainly results from human negligence or miscalculation of the load analysis and show that time has come to fully acknowledge that temporary structures should be more accounted for in design and not left to contractors' means and methods of construction.