15 resultados para HLRF-BASED ALGORITHMS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In these last years, systems engineering has became one of the major research domains. The complexity of systems has increased constantly and nowadays Cyber-Physical Systems (CPS) are a category of particular interest: these, are systems composed by a cyber part (computer-based algorithms) that monitor and control some physical processes. Their development and simulation are both complex due to the importance of the interaction between the cyber and the physical entities: there are a lot of models written in different languages that need to exchange information among each other. Normally people use an orchestrator that takes care of the simulation of the models and the exchange of informations. This orchestrator is developed manually and this is a tedious and long work. Our proposition is to achieve to generate the orchestrator automatically through the use of Co-Modeling, i.e. by modeling the coordination. Before achieving this ultimate goal, it is important to understand the mechanisms and de facto standards that could be used in a co-modeling framework. So, I studied the use of a technology employed for co-simulation in the industry: FMI. In order to better understand the FMI standard, I realized an automatic export, in the FMI format, of the models realized in an existing software for discrete modeling: TimeSquare. I also developed a simple physical model in the existing open source openmodelica tool. Later, I started to understand how works an orchestrator, developing a simple one: this will be useful in future to generate an orchestrator automatically.
Resumo:
The focus of the thesis is the application of different attitude’s determination algorithms on data evaluated with MEMS sensor using a board provided by University of Bologna. MEMS sensors are a very cheap options to obtain acceleration, and angular velocity. The use of magnetometers based on Hall effect can provide further data. The disadvantage is that they have a lot of noise and drift which can affects the results. The different algorithms that have been used are: pitch and roll from accelerometer, yaw from magnetometer, attitude from gyroscope, TRIAD, QUEST, Magdwick, Mahony, Extended Kalman filter, Kalman GPS aided INS. In this work the algorithms have been rewritten to fit perfectly with the data provided from the MEMS sensor. The data collected by the board are acceleration on the three axis, angular velocity on the three axis, magnetic fields on the three axis, and latitude, longitude, and altitude from the GPS. Several tests and comparisons have been carried out installing the electric board on different vehicles operating in the air and on ground. The conclusion that can be drawn from this study is that the Magdwich filter is the best trade-off between computational capabilities required and results obtained. If attitude angles are obtained from accelerometers, gyroscopes, and magnetometer, inconsistent data are obtained for cases where high vibrations levels are noticed. On the other hand, Kalman filter based algorithms requires a high computational burden. TRIAD and QUEST algorithms doesn’t perform as well as filters.
Resumo:
The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.
Resumo:
The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.
Resumo:
Magnetic Resonance Spectroscopy (MRS) is an advanced clinical and research application which guarantees a specific biochemical and metabolic characterization of tissues by the detection and quantification of key metabolites for diagnosis and disease staging. The "Associazione Italiana di Fisica Medica (AIFM)" has promoted the activity of the "Interconfronto di spettroscopia in RM" working group. The purpose of the study is to compare and analyze results obtained by perfoming MRS on scanners of different manufacturing in order to compile a robust protocol for spectroscopic examinations in clinical routines. This thesis takes part into this project by using the GE Signa HDxt 1.5 T at the Pavillion no. 11 of the S.Orsola-Malpighi hospital in Bologna. The spectral analyses have been performed with the jMRUI package, which includes a wide range of preprocessing and quantification algorithms for signal analysis in the time domain. After the quality assurance on the scanner with standard and innovative methods, both spectra with and without suppression of the water peak have been acquired on the GE test phantom. The comparison of the ratios of the metabolite amplitudes over Creatine computed by the workstation software, which works on the frequencies, and jMRUI shows good agreement, suggesting that quantifications in both domains may lead to consistent results. The characterization of an in-house phantom provided by the working group has achieved its goal of assessing the solution content and the metabolite concentrations with good accuracy. The goodness of the experimental procedure and data analysis has been demonstrated by the correct estimation of the T2 of water, the observed biexponential relaxation curve of Creatine and the correct TE value at which the modulation by J coupling causes the Lactate doublet to be inverted in the spectrum. The work of this thesis has demonstrated that it is possible to perform measurements and establish protocols for data analysis, based on the physical principles of NMR, which are able to provide robust values for the spectral parameters of clinical use.
Resumo:
Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.
Resumo:
The problem of localizing a scatterer, which represents a tumor, in a homogeneous circular domain, which represents a breast, is addressed. A breast imaging method based on microwaves is considered. The microwave imaging involves to several techniques for detecting, localizing and characterizing tumors in breast tissues. In all such methods an electromagnetic inverse scattering problem exists. For the scattering detection method, an algorithm based on a linear procedure solution, inspired by MUltiple SIgnal Classification algorithm (MUSIC) and Time Reversal method (TR), is implemented. The algorithm returns a reconstructed image of the investigation domain in which it is detected the scatterer position. This image is called pseudospectrum. A preliminary performance analysis of the algorithm vying the working frequency is performed: the resolution and the signal-to-noise ratio of the pseudospectra are improved if a multi-frequency approach is considered. The Geometrical Mean-MUSIC algorithm (GM- MUSIC) is proposed as multi-frequency method. The performance of the GMMUSIC is tested in different real life computer simulations. The performed analysis shows that the algorithm detects the scatterer until the electrical parameters of the breast are known. This is an evident limit, since, in a real life situation, the anatomy of the breast is unknown. An improvement in GM-MUSIC is proposed: the Eye-GMMUSIC algorithm. Eye-GMMUSIC algorithm needs no a priori information on the electrical parameters of the breast. It is an optimizing algorithm based on the pattern search algorithm: it searches the breast parameters which minimize the Signal-to-Clutter Mean Ratio (SCMR) in the signal. Finally, the GM-MUSIC and the Eye-GMMUSIC algorithms are tested on a microwave breast cancer detection system consisting of an dipole antenna, a Vector Network Analyzer and a novel breast phantom built at University of Bologna. The reconstruction of the experimental data confirm the GM-MUSIC ability to localize a scatterer in a homogeneous medium.
Resumo:
Lo streaming è una tecnica per trasferire contenuti multimediali sulla rete globale, utilizzato per esempio da servizi come YouTube e Netflix; dopo una breve attesa, durante la quale un buffer di sicurezza viene riempito, l'utente può usufruire del contenuto richiesto. Cisco e Sandvine, che con cadenza regolare pubblicano bollettini sullo stato di Internet, affermano che lo streaming video ha, e avrà sempre di più, un grande impatto sulla rete globale. Il buon design delle applicazioni di streaming riveste quindi un ruolo importante, sia per la soddisfazione degli utenti che per la stabilità dell'infrastruttura. HTTP Adaptive Streaming indica una famiglia di implementazioni volta a offrire la migliore qualità video possibile (in termini di bit rate) in funzione della bontà della connessione Internet dell'utente finale: il riproduttore multimediale può cambiare in ogni momento il bit rate, scegliendolo in un insieme predefinito, adattandosi alle condizioni della rete. Per ricavare informazioni sullo stato della connettività, due famiglie di metodi sono possibili: misurare la velocità di scaricamento dei precedenti trasferimenti (approccio rate-based), oppure, come recentemente proposto da Netflix, utilizzare l'occupazione del buffer come dato principale (buffer-based). In questo lavoro analizziamo algoritmi di adattamento delle due famiglie, con l'obiettivo di confrontarli su metriche riguardanti la soddisfazione degli utenti, l'utilizzo della rete e la competizione su un collo di bottiglia. I risultati dei nostri test non definiscono un chiaro vincitore, riconoscendo comunque la bontà della nuova proposta, ma evidenziando al contrario che gli algoritmi buffer-based non sempre riescono ad allocare in modo imparziale le risorse di rete.
Resumo:
The final goal of the thesis should be a real-world application in the production test data environment. This includes the pre-processing of the data, building models and visualizing the results. To do this, different machine learning models, outlier prediction oriented, should be investigated using a real dataset. Finally, the different outlier prediction algorithms should be compared, and their performance discussed.
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.
Resumo:
Rail transportation has significant importance in the future world. This importance is tightly bounded to accessible, sustainable, efficient and safe railway systems. Precise positioning in railway applications is essential for increasing railway traffic, train-track control, collision avoidance, train management and autonomous train driving. Hence, precise train positioning is a safety-critical application. Nowadays, positioning in railway applications highly depends on a cellular-based system called GSM-R, a railway-specific version of Global System for Mobile Communications (GSM). However, GSM-R is a relatively outdated technology and does not provide enough capacity and precision demanded by future railway networks. One option for positioning is mounting Global Navigation Satellite System (GNSS) receivers on trains as a low-cost solution. Nevertheless, GNSS can not provide continuous service due to signal interruption by harsh environments, tunnels etc. Another option is exploiting cellular-based positioning methods. The most recent cellular technology, 5G, provides high network capacity, low latency, high accuracy and high availability suitable for train positioning. In this thesis, an approach to 5G-based positioning for railway systems is discussed and simulated. Observed Time Difference of Arrival (OTDOA) method and 5G Positioning Reference Signal (PRS) are used. Simulations run using MATLAB, based on existing code developed for 5G positioning by extending it for Non Line of Sight (NLOS) link detection and base station exclusion algorithms. Performance analysis for different configurations is completed. Results show that efficient NLOS detection improves positioning accuracy and implementing a base station exclusion algorithm helps for further increase.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
The decomposition of Feynman integrals into a basis of independent master integrals is an essential ingredient of high-precision theoretical predictions, that often represents a major bottleneck when processes with a high number of loops and legs are involved. In this thesis we present a new algorithm for the decomposition of Feynman integrals into master integrals with the formalism of intersection theory. Intersection theory is a novel approach that allows to decompose Feynman integrals into master integrals via projections, based on a scalar product between Feynman integrals called intersection number. We propose a new purely rational algorithm for the calculation of intersection numbers of differential $n-$forms that avoids the presence of algebraic extensions. We show how expansions around non-rational poles, which are a bottleneck of existing algorithms for intersection numbers, can be avoided by performing an expansion in series around a rational polynomial irreducible over $\mathbb{Q}$, that we refer to as $p(z)-$adic expansion. The algorithm we developed has been implemented and tested on several diagrams, both at one and two loops.
Resumo:
Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.
Resumo:
The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.