3 resultados para HIGH PHOTOCATALYTIC ACTIVITY
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
H2 demand is continuously increasing since its many relevant applications, for example, in the ammonia production, refinery processes or fuel cells. The Water Gas Shift (WGS) reaction (CO + H2O = CO2 + H2 DeltaH = -41.1 kJ.mol-1) is a step in the H2 production, reducing significantly the CO content and increasing the H2 one in the gas mixtures obtained from steam reforming. Industrially, the reaction is carried out in two stages with different temperature: the first stage operates at high temperature (350-450 °C) using Fe-based catalysts, while the second one is performed at lower temperature (190-250 °C) over Cu-based catalysts. However, recently, an increasing interest emerges to develop new catalytic formulations, operating in a single-stage at middle temperature (MTS), while maintaining optimum characteristics of activity and stability. These formulations may be obtained by improving activity and selectivity of Fe-based catalysts or increasing thermal stability of Cu-based catalysts. In the present work, Cu-based catalysts (Cu/ZnO/Al2O3) prepared starting from hydrotalcite-type precursors show good homogeneity and very interesting physical properties, which worsen by increasing the Cu content. Among the catalysts with different Cu contents, the catalyst with 20 wt.% of Cu represents the best compromise to obtain high catalytic activity and stability. On these bases, the catalytic performances seem to depend on both metallic Cu surface area and synergetic interactions between Cu and ZnO. The increase of the Al content enhances the homogeneity of the precursors, leading to a higher Cu dispersion and consequent better catalytic performances. The catalyst with 20 wt.% of Cu and a molar ratio M(II)/M(III) of 2 shows a high activity also at 250 °C and a good stability at middle temperature. Thus, it may be considered an optimum catalyst for the WGS reaction at middle temperature (about 300 °C). Finally, by replacing 50 % (as at. ratio) of Zn by Mg (which is not active in the WGS reaction), better physical properties were observed, although associate with poor catalytic performances. This result confirms the important role of ZnO on the catalytic performances, favoring synergetic interactions with metallic Cu.
Resumo:
Solar fuels from CO2 is a topic of current large scientific and industrial interest. In particular, photo-electrochemical cells (PECs) represent today one of the most promising technology for storing sun energy as chemical bonds exploiting carbon dioxide as starting reagent. In this thesis, the possibility of using Aurivillius-type compounds for the production of solar fuels was deeply investigated. Aurivillius-type perovskites, with general formula Bi(n+1)Fe(n-3)Ti3O(3n+3), were synthesized and fully characterized to study the influence of the number of perovskite layers as well as of the synthesis parameters onto their final properties. In particular, 8 different systems were considered increasing the amount of iron and, as a consequence, the number of perovskite layers. These compounds were synthesized through a standard solid-state reaction method as well as via a sol-gel technique and characterized by XRD, SEM and BET analyses. The band gap value and the photocatalytic activity towards Rhodamine B decomposition were assessed as well. For each system, a screen-printing ink was formulated to be deposited as photo-electrodes onto transparent conducting supports. The photo-electrodes were morphologically characterized by XRD and SEM analysis, and their electrochemical properties (cyclic and linear voltammetry, EIS, Mott-Schottky analysis) were determined. Finally, the most promising materials were tested as photo-cathode inside PEC cell under different illumination conditions, to quantify their ability to convert CO2. The obtained results show the potentiality of Aurivillius-type compounds as innovative material for carbon dioxide photo-electrochemical reduction.
Resumo:
Preformed Au nanoparticles supported on activated carbon and TiO2 were synthesised by sol-immobilisation. Polyethylene glycol, polyvinyl pyrrolidone and polyvinyl alcohol were used as stabilisers for the gold nanoparticles at different polymer/Au wt/wt ratios for each polymer. The effect of polymer/Au wt/wt ratios was investigated on (i) the average nanoparticle size, (ii) catalytic activity for two reactions, 4-nitrophenol reduction and glucose oxidation to glucaric acid. 4-nitrophenol reduction is recognised as a model reaction for nanomaterial catalytic activity tests; glucose oxidation to glucaric acid is a reaction that is traditionally carried out with concentrated nitric acid, for which alternative reaction pathways are looked for in an effort to reduce its environmental impact. The catalysts were characterised from the nanoparticle synthesis by colloidal method by means of UV-vis spectroscopy and DLS analysis, to the immobilisation step by XRD and TEM. The effect of the polymer:Au wt/wt ratio on nanoparticle size depends on the polymer nature, and point out the need to optimise supported nanoparticle synthesis protocols in the future depending on the type of stabiliser. The catalytic tests revealed that the polymers interact with Au nanoparticles through different active sites. Activated carbon (AC) and TiO2 were compared as supports for Au nanoparticles stabilised by PVA at PVA/Au 0,65 wt/wt. AC-supported Au NPs were the most active for glucose oxidation while TiO2-stabilised Au NPs were five times more active in 4-nitrophenol reduction that AC-supported NPs. Hence support and stabiliser are important parameters that should be optimised in order to achieve high catalytic activity for a given reaction.