3 resultados para HERMITE POLYNOMIALS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Vengono presentate correzioni agli sviluppi asintotici di Edgeworth per densità di somme di variabili aleatorie stabili. Queste stime sono successivamente implementate in Matlab, con particolare attenzioni agli approssimanti in forma razionale di Padè. Nell'Appendice viene poi fornita la distribuzione di zeri degli approssimanti di Padè per la funzione esponenziale.
Resumo:
After briefly discuss the natural homogeneous Lie group structure induced by Kolmogorov equations in chapter one, we define an intrinsic version of Taylor polynomials and Holder spaces in chapter two. We also compare our definition with others yet known in literature. In chapter three we prove an analogue of Taylor formula, that is an estimate of the remainder in terms of the homogeneous metric.
Resumo:
In my work I derive closed-form pricing formulas for volatility based options by suitably approximating the volatility process risk-neutral density function. I exploit and adapt the idea, which stands behind popular techniques already employed in the context of equity options such as Edgeworth and Gram-Charlier expansions, of approximating the underlying process as a sum of some particular polynomials weighted by a kernel, which is typically a Gaussian distribution. I propose instead a Gamma kernel to adapt the methodology to the context of volatility options. VIX vanilla options closed-form pricing formulas are derived and their accuracy is tested for the Heston model (1993) as well as for the jump-diffusion SVJJ model proposed by Duffie et al. (2000).