6 resultados para Groupe de lie
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
La tesi è dedicata allo studio delle rappresentazioni delle algebre di Lie semisemplici su un campo algebricamente chiuso di caratteristica zero. Mediante il teorema di Weyl sulla completa riducibilità, ogni rappresentazione di dimensione finita di una algebra di Lie semisemplice è scrivibile come somma diretta di sottorappresentazioni irriducibili. Questo permette di poter concentrare l'attenzione sullo studio delle rappresentazioni irriducibili. Inoltre, mediante il ricorso all'algebra inviluppante universale si ottiene che ogni rappresentazione irriducibile è una rappresentazione di peso più alto. Perciò è naturale chiedersi quando una rappresentazione di peso più alto sia di dimensione finita ottenendo che condizione necessaria e sufficiente perché una rappresentazione di peso più alto sia di dimensione finita è che il peso più alto sia dominante. Immediata è quindi l'applicazione della teoria delle rappresentazioni delle algebre di Lie semisemplici nello studio delle superalgebre di Lie, in quanto costituite da un'algebra di Lie e da una sua rappresentazione, dove viene utilizzata la tecnica della Z-graduazione che viene utilizzata per la prima volta da Victor Kac nello studio delle algebre di Lie di dimensione infinita nell'articolo ''Simple irreducible graded Lie algebras of finite growth'' del 1968.
Resumo:
In questa tesi abbiamo studiato le forme reali di algebre e superalgebre di Lie. Il lavoro si suddivide in tre capitoli diversi, il primo è di introduzione alle algebre di Lie e serve per dare le prime basi di questa teoria e le notazioni. Nel secondo capitolo abbiamo introdotto le algebre compatte e le forme reali. Abbiamo visto come sono correlate tra di loro tramite strumenti potenti come l'involuzione di Cartan e relativa decomposizione ed i diagrammi di Vogan e abbiamo introdotto un algoritmo chiamato "push the button" utile per verificare se due diagrammi di Vogan sono equivalenti. Il terzo capitolo segue la struttura dei primi due, inizialmente abbiamo introdotto le superalgebre di Lie con relativi sistemi di radici e abbiamo proseguito studiando le relative forme reali, diagrammi di Vogan e abbiamo introdotto anche qua l'algoritmo "push the button".
Resumo:
Tesi in algebra che propone uno studio parallelo di risolubilità e nilpotenza nei gruppi e nelle algebre di Lie. Vengono descritte dapprima le algebre di Lie in modo da fornire una conoscenza preliminare riguardo a questa struttura algebrica. In seguito esse vengono messe a confronto con i gruppi sotto l'aspetto appunto di risolubilità e nilpotenza.