2 resultados para Gravity inversion. Basement relief. Potiguar basin. Constrained inversion
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the present thesis we address the problem of detecting and localizing a small spherical target with characteristic electrical properties inside a volume of cylindrical shape, representing female breast, with MWI. One of the main works of this project is to properly extend the existing linear inversion algorithm from planar slice to volume reconstruction; results obtained, under the same conditions and experimental setup are reported for the two different approaches. Preliminar comparison and performance analysis of the reconstruction algorithms is performed via numerical simulations in a software-created environment: a single dipole antenna is used for illuminating the virtual breast phantom from different positions and, for each position, the corresponding scattered field value is registered. Collected data are then exploited in order to reconstruct the investigation domain, along with the scatterer position, in the form of image called pseudospectrum. During this process the tumor is modeled as a dielectric sphere of small radius and, for electromagnetic scattering purposes, it's treated as a point-like source. To improve the performance of reconstruction technique, we repeat the acquisition for a number of frequencies in a given range: the different pseudospectra, reconstructed from single frequency data, are incoherently combined with MUltiple SIgnal Classification (MUSIC) method which returns an overall enhanced image. We exploit multi-frequency approach to test the performance of 3D linear inversion reconstruction algorithm while varying the source position inside the phantom and the height of antenna plane. Analysis results and reconstructed images are then reported. Finally, we perform 3D reconstruction from experimental data gathered with the acquisition system in the microwave laboratory at DIFA, University of Bologna for a recently developed breast-phantom prototype; obtained pseudospectrum and performance analysis for the real model are reported.
Resumo:
Privacy issues and data scarcity in PET field call for efficient methods to expand datasets via synthetic generation of new data that cannot be traced back to real patients and that are also realistic. In this thesis, machine learning techniques were applied to 1001 amyloid-beta PET images, which had undergone a diagnosis of Alzheimer’s disease: the evaluations were 540 positive, 457 negative and 4 unknown. Isomap algorithm was used as a manifold learning method to reduce the dimensions of the PET dataset; a numerical scale-free interpolation method was applied to invert the dimensionality reduction map. The interpolant was tested on the PET images via LOOCV, where the removed images were compared with the reconstructed ones with the mean SSIM index (MSSIM = 0.76 ± 0.06). The effectiveness of this measure is questioned, since it indicated slightly higher performance for a method of comparison using PCA (MSSIM = 0.79 ± 0.06), which gave clearly poor quality reconstructed images with respect to those recovered by the numerical inverse mapping. Ten synthetic PET images were generated and, after having been mixed with ten originals, were sent to a team of clinicians for the visual assessment of their realism; no significant agreements were found either between clinicians and the true image labels or among the clinicians, meaning that original and synthetic images were indistinguishable. The future perspective of this thesis points to the improvement of the amyloid-beta PET research field by increasing available data, overcoming the constraints of data acquisition and privacy issues. Potential improvements can be achieved via refinements of the manifold learning and the inverse mapping stages during the PET image analysis, by exploring different combinations in the choice of algorithm parameters and by applying other non-linear dimensionality reduction algorithms. A final prospect of this work is the search for new methods to assess image reconstruction quality.