2 resultados para Gonadotropins mrna levels
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.
Resumo:
Nowadays, soy is one of the most used ingredients in the formulation of fish feed, due to the ample market supply, lower market price, high protein concentration and favorable amino acid composition. Nevertheless, soybean meal products are rich and primary diet source of phytoestrogens, as genistein, which may have a potential negative impact on growth, hormonal regulation and lipid metabolism in fish. The principal aim of this study was to better understand in vivo and in vitro genistein’s effects on lipid metabolism of rainbow trout. In adipose tissue it was showed an unclear role of genistein on lipid metabolism in rainbow trout, and in liver an anti-obesogenic effect, with an up-regulation of autophagy-related genes LC3b (in adipose tissue) and ATG4b (in liver and adipose tissue), a down-regulation of apoptosis-related genes CASP3 (in adipose tissue) and CASP8 (in liver). An increase of VTG mRNA levels in liver was also observed. Genistein partially exerted these effects via estrogen- receptor dependent mechanism. In white muscle, genistein seemed to promote lipid turnover, up-regulating lipogenic (FAS and LXR) and lipolytic (HSL, PPARα and PPARβ) genes. It seemed that genistein could exert its lipolytic role via autophagic way (up-regulation of ATG4b and ATG12l), not through an apoptotic pathway (down-regulation of CASP3). The effects of genistein on lipid-metabolism and apoptosis-related genes in trout muscle were not dose-dependent, only on autophagy-related genes ATG4B and ATG12l. Moreover, a partial estrogenic activity of this phytoestrogen was also seen. Through in vitro analysis (MTT and ORO assay), instead, it was observed an anti-obesogenic effect of genistein on rainbow trout adipocytes, and this effect was not mediated by ERs. Both in vivo and in vitro, genistein exerted its effects in a dose-dependent manner.