6 resultados para Glued laminated lumber

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last years an increased interest about the reinforcement of laminated composites by means of polymeric nanofibers has been growth. During this master-degree-thesis work, unidirectional and plane-textile composites have been interleaved with Nylon 6.6, PCL and mixed (Nylon 6.6+PCL) nanofibrous mats and the DCB (mode I interlaminar fracture toughness), ENF (mode II interlaminar fracture toughness and DMA (damping capability) tests have been performed. Regarding the interlaminar fracture toughness, marked increases have been recorded; while further investigation about damping capability is requested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis work has been carried out at Clarkson University in Potsdam NY, USA and involved the design of a low elongation wing, consisting of parts made by polylactide (PLA) using the fused deposition model (FDM) technology of Rapid Prototyping, then assembled together in a thin aluminum spar. The aim of the research is to evaluate the feasibility of collecting electrical energy by converting mechanical energy from the vibration of the wing flutter. With this aim piezoelectric stripes were glued in the inner part of the wing, as well as on the aluminum spar, as monomorphic configuration. During the phases of the project, particular attention was given to the geometry and the materials used, in order to trigger the flutter for low flow velocity. The CAD software SolidWorks® was used for the design of the wing and then the drawings were sent to the Clarkson machine shop in order to to produce the parts required by the wing assembly. FEM simulations were performed, using software MSC NASTRAN/PATRAN®, to evaluate the stiffness of the whole wing as well as the natural vibration modes of the structure. These data, in a first approximation, were used to predict the flutter speed. Finally, experimental tests in the Clarkson wind tunnel facility were carried out in order to validate the results obtained from FEM analysis. The power collected by the piezoelectrics under flutter condition was addressed by tuning the resistors downstream the electronic circuit of the piezoelectrics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanofibrous membranes are a promising material for tailoring the properties of laminated CFRP composites by embedding them into the structure. This project aimed to understand the effect of number, position and thickness of nanofibrous modifications specifically on the damping behaviour of the resulting nano-modified CFRP composite with an epoxy matrix. An improvement of damping capacity is expected to improve a composites lifetime and fatigue resistance by prohibiting the formation of microcracks and consequently hindering delamination, it also promises a rise in comfort for a range of final products by intermission of vibration propagation and therefore diminution of noise. Electrospinning was the technique employed to produce nanofibrous membranes from a blend of polymeric solutions. SEM, WAXS and DSC were utilised to evaluate the quality of the obtained membranes before they were introduced, following a specific stacking sequence, in the production process of the laminate. A suitable curing cycle in an autoclave was applied to mend the modifications together with the matrix material, ensuring full crosslinking of the matrix and therefore finalising the production process. DMA was exercised in order to gain an understanding about the effects of the different modifications on the properties of the composite. During this investigation it became apparent that a high number of modifications of laminate CFRP composites, with an epoxy matrix, with thick rubbery nanofibrous membranes has a positive effect on the damping capacity and the temperature range the effect applies in. A suggestion for subsequent studies as well as a recommendation for the production of nano-modified CFRP structures is included at the end of this document.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the SM, while Lepton Flavour Violation is allowed in the neutral sector, Charged Lepton Flavour Violation (CLFV) processes are forbidden. The Mu2e Experiment at Fermilab will search for the CLFV process of neutrinoless conversion of a muon into an electron within the field of an Al nucleus. The Mu2e detectors and its state-of-the-art superconducting magnetic system are presented, with special focus put to the electromagnetic crystal calorimeter. The calorimeter is composed by two annular disks, each one hosting pure CsI crystals read-out by custom silicon photomultipliers (SiPMs). The SiPMs are amplified by custom electronics (FEE) and are glued to copper holders in group of 2 SiPMs and 2 FEE boards thus forming a crystal Readout Unit. These Readout Units are being tested at the Quality Control (QC) Station, whose design, realization and operations are presented in this work. The QC Station allows to determine the gain, the response and the photon detection efficiency of each unit and to evaluate the dependence of these parameters from the supply voltage and temperature. The station is powered by two remotely-controlled power supplies and monitored thanks to a Slow Control system which is also illustrated in this work. In this thesis, we also demonstrated that the calorimeter can perform its own measurement of the Mu2e normalization factor, i.e. the counting of the 1.8 MeV photon line produced in nuclear muon captures. A specific calorimeter sub-system called CAPHRI, composed by four LYSO crystals with SiPM readout, has been designed and tested. We simulated the capability of this system on performing this task showing that it can get a faster and more reliable measurement of the muon capture rates with respect to the current Mu2e detector dedicated to this measurement. The characterization of energy resolution and response uniformity of the four procured LYSO crystals are llustrated.