5 resultados para Glass Transition Temperature
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This study, which is undertaken in cooperation with Riba-COMPOSITES, investigates the effects of hygroscopic ageing on the Interlaminar Shear Strength and Glass Transition Temperature of short-beams made of carbon fibre reinforced polymer (CFRP) composites provided by two different vendors. The materials have the same weave pattern but differ in the epoxy resin formulation. The tests are done in accordance with ASTM. Accelerated ageing techniques are carried out by immersion of the specimens in deionized water at 70°C for different periods of time, developing different degrees of ageing. The results of the tests confirm that hygroscopic ageing causes a loss of properties and a depression of the glass transition temperature in both the materials. However, since one of the two materials shows more constant property degradation, its behaviour in service conditions should be more easily predictable.
Resumo:
In questa tesi si è voluta porre l’attenzione sulla suscettibilità alle alte temperature delle resine che li compongono. Lo studio del comportamento alle alte temperature delle resine utilizzate per l’applicazione dei materiali compositi è risultato un campo di studio ancora non completamente sviluppato, nel quale c’è ancora necessità di ricerche per meglio chiarire alcuni aspetti del comportamento. L’analisi di questi materiali si sviluppa partendo dal contesto storico, e procedendo successivamente ad una accurata classificazione delle varie tipologie di materiali compositi soffermandosi sull’ utilizzo nel campo civile degli FRP (Fiber Reinforced Polymer) e mettendone in risalto le proprietà meccaniche. Considerata l’influenza che il comportamento delle resine riveste nel comportamento alle alte temperature dei materiali compositi si è, per questi elementi, eseguita una classificazione in base alle loro proprietà fisico-chimiche e ne sono state esaminate le principali proprietà meccaniche e termiche quali il modulo elastico, la tensione di rottura, la temperatura di transizione vetrosa e il fenomeno del creep. Sono state successivamente eseguite delle prove sperimentali, effettuate presso il Laboratorio Resistenza Materiali e presso il Laboratorio del Dipartimento di Chimica Applicata e Scienza dei Materiali, su dei provini confezionati con otto differenti resine epossidiche. Per valutarne il comportamento alle alte temperature, le indagini sperimentali hanno valutato dapprima le temperature di transizione vetrosa delle resine in questione e, in seguito, le loro caratteristiche meccaniche. Dalla correlazione dei dati rilevati si sono cercati possibili legami tra le caratteristiche meccaniche e le proprietà termiche delle resine. Si sono infine valutati gli aspetti dell’applicazione degli FRP che possano influire sul comportamento del materiale composito soggetto alle alte temperature valutando delle possibili precauzioni che possano essere considerate in fase progettuale.
Resumo:
An investigation on the synthesis and properties of ferrocene-containing methacrylate monomer and polymer was carried out. Block copolymers of Ferrocenylmethyl Methacrylate with methyl, butil and esil methacrylate, were also prepared. The side-chain ferrocene-containing polymers and copolymers were prepared via atom transfer radical polymerization (ATRP). The glass transition temperature (Tg) values of the polymers and copolymers were measured by differential scan calorimetry (DSC).The thermal degradation behavior of copolymers was also studied and compared with the respective homopolymers. Cyclic voltammetry was employed to study the electrochemical properties. Preliminar electrochemical studies with a glassy carbon and Indium Tin Oxide electrodes modified with ferrocene-polymer conducted in aqueous and organic media are reported.
Resumo:
This work has been conducted in order to determine the solubility and diffusion coefficients of different aromatic substances in two different grades of polylactic acid (PLA), Amorphous (PDLLA) and Crystalline (PLLA); in particular the focus is on the following terpenes: Linalool, α-Pinene, β-Citronellol and L-Linalool. Moreover, further analyses have been carried out with the aim to verify if the use of neat crystalline PLA, (PLLA), a chiral substrate, may lead to an enantioenrichment of absorbed species in order to use it as membrane in enantioselective processes. The other possible applications of PLA, which has aroused interest in carry out the above-mentioned work, concerns its use in food packaging. Therefore, it is interesting and also very important, to evaluate the barrier properties of PLA, focusing in particular on the transport and absorption of terpenes, by the packaging and, hence, by the PLA. PLA films/slabs of one-millimeter thickness and with square shape, were prepared through the Injection Molding process. On the resulting PLA films heat pretreatment processes of normalizing were then performed to enhance the properties of the material. In order to evaluate solubility and diffusion coefficient of the different penetrating species, the absorption kinetics of various terpenes, in the two different types of PLA, were determined by gravimetric methods. Subsequently, the absorbed liquid was extracted with methanol (MeOH), non- solvent for PLA, and the extract analyzed by the use of High Performance Liquid Chromatography (HPLC), in order to evaluate its possible enantiomeric excess. Moreover, PLA films used were subjected to differential scanning calorimetry (DSC) which allowed to measure the glass transition temperature (Tg) and to determine the degree of crystallinity of the polymer (Xc).
Resumo:
For 40 years, at the University of Bologna, a group of researchers coordinated by professor Claudio Zannoni has been studying liquid crystals by employing computational techniques. They have developed effective models of these interesting, and still far from being completely understood, systems. They were able to reproduce with simulations important features of some liquid crystal molecules, such as transition temperature. Then they focused their attention on the interactions that these molecules have with different kinds of surface, and how these interactions affect the alignment of liquid crystals. The group studied the behaviour of liquid crystals in contact with different kinds of surfaces, from silica, either amorphous and crystalline, to organic self assembled monolayers (SAMs) and even some common polymers, such as polymethylmethacrylate (PMMA) and polystyrene (PS). Anyway, a library of typical surfaces is still far from being complete, and a lot of work must be done to investigate the cases which have not been analyzed yet. A hole that must be filled is represented by polydimethylsiloxane (PDMS), a polymer on which the interest of industry has enormously grown up in the last years, thanks to its peculiar features, allowing it to be employed in many fields of applications. It has been observed experimentally that PDMS causes 4-cyano-4’-pentylbiphenyl (well known as 5CB), one of the most common liquid crystal molecules, to align homeotropically (i.e. perpendicular) with respect to a surface made of this polymer. Even though some hypothesis have been presented to rationalize the effect, a clear explanation of this phenomenon has not been given yet. This dissertation shows the work I did during my internship in the group of professor Zannoni. The challenge that I had to tackle was to investigate, via Molecular Dynamics (MD) simulations, the reasons of 5CB homeotropic alignment on a PDMS surface, as the group had previously done for other surfaces.