2 resultados para Gibraltar Strait
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Mediterranean Sea is a semi-enclosed sea, connected to the Atlantic Ocean through the Gibraltar Strait and subdivided in two different regions by the Sicily Strait. The geographical extension of the basin, the surface heat flux, and the water inflow from the Gibraltar Strait are some of the basic factors determining its horizontal and vertical circulation. In the Mediterranean strong salinity and temperature zonal gradients contribute to maintain the zonal-vertical circulation, while meridional-vertical cells are equally forced by winds and deep water mass formation in three regions, the Gulf of Lyon, the southern Adriatic and the Cretan Sea areas. The objective of this thesis is to study how these cells combine together to form the Mediterranean conveyor belt system. This has never been attempted before so the conclusions are necessarily preliminary. In the first part we discuss the vertical zonal and meridional circulation by reconstructing the Wust Mediterranean vertical salinity and temperature structures in an attempt to evaluate the water mass structure consistent with modern data. Our results confirm that Wust depicted vertical circulation from scarce data is reproduced by the past 27 years observations. The structure of both meridional and zonal circulations was discussed using velocity vertical streamfunctions with two different methods. The first one, eulerian, allowed us to observe vertical structures that were already reported in the literature. Recent studies in the Atlantic Ocean have shown that gyres and eddies have an important influence in the isopycnal vertical circulation. This is called the residual circulation which was computed in this study for the first time. A possible interpretation of horizontal connection between the meridional and zonal cells was discussed using horizontal streamfunction. In the last part of the thesis we have been developing an idealized numerical model to study the vertical circulation in the Mediterranean.
Resumo:
The blue shark, Prionace glauca, is one of the most vagile shark species worldwide distributed. The particular body shape allows blue sharks make transoceanic movements, leading to a circumglobal distribution. Due to its reproductive cycle, an extraordinarily high number of specimens is globally registered but, even if it is still a major bycatch of longline fishery rather than a commercial target, it is characterized by a high vulnerability. In this perspective it is important to increase the amount of informations regarding its population extent in the different worldwide areas, evaluating the possible phylogeographic patterns between different locations. This study, included in the "MedBlueSGen" European project, aims exactly at filling a gap in knowledges regarding the genetic population structure of the Mediterranean blue sharks, which has never been investigated before, with a comparison with the North-Eastern Atlantic blue shark population. To reach this objective, we used a dataset of samples from different Mediterranean areas implementing it with some samples from North-Eastern Atlantic. Analyzing the variability of the two mitochondrial markers control region and cytochrome b, with the design of new species-specific primer pairs, we assessed the mitochondrial genetic structure of Mediterranean and North-Eastern Atlantic samples, focusing on the analysis of their possible connectivity, and we tried to reconstruct their demographic history and population size. Data analyses highlighted the absence of a genetic structuring within the Mediterranean and among it and North-Eastern Atlantic, suggesting that the Strait of Gibraltar doesn't represent a phylogeographic barrier. These results are coherent to what has been found in similar investigations on other worldwide blue shark populations. Analysis of the historical demographic trend revealed a general stable pattern for the cytochrome-b and a slightly population expansion for the control region marker.