2 resultados para Geosynthetics

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object of this thesis has been centrifuge modelling of earth reinforced retaining walls with modular blocks facing in order to investigate on the influence of design parameters, such as length and vertical spacing of reinforcement, on the behaviour of the structure. In order to demonstrate, 11 models were tested, each one with different length of reinforcement or spacing. Each model was constructed and then placed in the centrifuge in order to artificially raise gravitational acceleration up to 35 g, reproducing the soil behaviour of a 5 metre high wall. Vertical and horizontal displacements were recorded by means of a special device which enabled tracking of deformations in the structure along its longitudinal cross section, essentially drawing its deformed shape. As expected, results confirmed reinforcement parameters to be the governing factor in the behaviour of earth reinforced structures since increase in length and spacing improved structural stability. However, the influence of the length was found out to be the leading parameter, reducing facial deformations up to five times, and the spacing playing an important role especially in unstable configurations. When failure occurred, failure surface was characterised by the same shape (circular) and depth, regardless of the reinforcement configuration. Furthermore, results confirmed the over-conservatism of codes, since models with reinforcement layers 0.4H long showed almost negligible deformations. Although the experiments performed were consistent and yielded replicable results, further numerical modelling may allow investigation on other issues, such as the influence of the reinforcement stiffness, facing stiffness and varying backfills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparison between main design methods for unpaved roads is presented in this paper. An unpaved road is made up of an unbound aggregate base course lying on a usually weak subgrade. A geosynthetic might be put between the two in reinforcing and separating function. The goal of a design method is to find the appropriate thickness of the base course knowing at least traffic volume, wheel load, tire pressure, undrained cohesion of the subgrade, allowable rut depth and influence of the reinforcement. Geosynthetics can reduce the thickness or the quality of aggregate required and improve the durability of an unpaved road. Geotextiles contribute to save aggregate through interaction friction and separation, while geogrids through interlocking between his apertures and lithic base elements. In the last chapter a case study is discussed and design thicknesses with two design methods for the three possible cases (i.e. unreinforced, geotextile reinforced, geogrid reinforced) are calculated.