5 resultados para Garner, Mark: Language : An ecological view
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The benthic dinoflagellate O. ovata represents a serious threat for human health and for the ecology of its blooming areas: thanks to its toxicity this microalga has been responsible for several cases of human intoxication and mass mortalities of benthic invertebrates. Although the large number of studies on this dinoflagellate, the mechanisms underpinning O. ovata growth and toxin production are still far to be fully understood. In this work we have enriched the dataset on this species by carrying out a new experiment on an Adriatic O. cf. ovata strain. Data from this experiment (named Beta) and from another comparable experiment previously conducted on the same strain (named Alpha), revealed some interesting aspects of this dinoflagellate: it is able to grow also in a condition of strong intracellular nutrient deficiency (C:P molar ratio > 400; C:N > 25), reaching extremely low values of chlorophyll-a to carbon ratio (0.0004). Was also found a significant inverse relationships (r > -0.7) between cellular toxin to carbon and cellular nutrient to carbon ratios of experiment Alpha. In the light of these result, we hypothesized that in O. cf. ovata nutrient-stress conditions (intended as intracellular nutrient deficiency) can cause: i) an increase in toxin production; ii) a strong decrease in chlorophyll-a synthesis; iii) a lowering of metabolism associated with the formation of a sort of resting stage. We then used a modelling approach to test and critically evaluate these hypotheses in a mechanistic way: newly developed formulation describing toxin production and fate, and ad hoc changes in the already existent formulations describing chlorophyll synthesis, rest respiration, and mortality, have been incorporated in a simplified version of the European Regional Seas Ecosystem Model (ERSEM), together with a new ad hoc parameterization. The adapted model was able to accurately reproduce many of the trends observed in the Alpha experiment, allowing us to support our hypotheses. Instead the simulations of the experiment Beta were not fully satisfying in quantitative terms. We explained this gap with the presumed different physiological behaviors between the algae of the two experiments, due to the different pre-experimental periods of acclimation: the model was not able to reproduce acclimation processes in its simulations of the experiment Beta. Thus we attempt to simulate the acclimation of the algae to nutrient-stress conditions by manual intervention on some parameters of nutrient-stress thresholds, but we received conflicting results. Further studies are required to shed light on this interesting aspect. In this work we also improve the range of applicability of a state of the art marine biogeochemical model (ERSEM) by implementing in it an ecological relevant process such as the production of toxic compounds.
Resumo:
Human activities strongly influence environmental processes, and while human domination increases, biodiversity progressively declines in ecosystems worldwide. High genetic and phenotypic variability ensures functionality and stability of ecosystem processes through time and increases the resilience and the adaptive capacity of populations and communities, while a reduction in functional diversity leads to a decrease in the ability to respond in a changing environment. Pollution is becoming one of the major threats in aquatic ecosystem, and pharmaceutical and personal care products (PPCPs) in particular are a relatively new group of environmental contaminants suspected to have adverse effects on aquatic organisms. There is still a lake of knowledge on the responses of communities to complex chemical mixtures in the environment. We used an individual-trait-based approach to assess the response of a phytoplankton community in a scenario of combined pollution and environmental change (steady increasing in temperature). We manipulated individual-level trait diversity directly (by filtering out size classes) and indirectly (through exposure to PPCPs mixture), and studied how reduction in trait-diversity affected community structure, production of biomass and the ability of the community to track a changing environment. We found that exposure to PPCPs slows down the ability of the community to respond to an increasing temperature. Our study also highlights how physiological responses (induced by PPCPs exposure) are important for ecosystem processes: although from an ecological point of view experimental communities converged to a similar structure, they were functionally different.
Resumo:
The need for sustainable economic growth and environmental stewardship emerged around the start of the twentieth century when society became aware that the traditional development model would lead to the collapse of the terrestrial ecosystem in the long run. Over the years, the international community's environmental efforts have demonstrated unequivocally that the planet's limits are real. And so, the new development approach has laid the groundwork for the future. According to this model, design also plays a key role in ensuring a better future. The design has undergone an ecological and sustainable evolution as a result of the global environmental crisis and the degradation of our ecosystem and biodiversity. In this contest, Prosperity Thinking is inserted, a still evolving methodology developed by the Future Food Institute starting from 2019. The main concepts on which it is based are described, as well as the method that identifies it, which is divided into the following stages: 1) Problem Framing 2) Ideation and Prototyping 3) Test & Analyze. The development of the prosperity thinking toolkit is described, beginning with the search for tools from the literature on sustainable design and ending with its validation with the help of design experts. The testing of some tools will be recounted during a workshop organized by FFI, in which 15 people ranging in age from 14 to 40 will participate, and then the final version of the toolkit will be presented which has been obtained by adding to it the tools proposed by the experts. Finally, a reflection on the future of Prosperity Thinking, a method in constant evolution that must continue to follow societal and environmental changes in order to respond to the ever-increasingly complex challenge of sustainability.
Resumo:
The technology of partial virtualization is a revolutionary approach to the world of virtualization. It lies directly in-between full system virtual machines (like QEMU or XEN) and application-related virtual machines (like the JVM or the CLR). The ViewOS project is the flagship of such technique, developed by the Virtual Square laboratory, created to provide an abstract view of the underlying system resources on a per-process basis and work against the principle of the Global View Assumption. Virtual Square provides several different methods to achieve partial virtualization within the ViewOS system, both at user and kernel levels. Each of these approaches have their own advantages and shortcomings. This paper provides an analysis of the different virtualization methods and problems related to both the generic and partial virtualization worlds. This paper is the result of an in-depth study and research for a new technology to be employed to provide partial virtualization based on ELF dynamic binaries. It starts with a mild analysis of currently available virtualization alternatives and then goes on describing the ViewOS system, highlighting its current shortcomings. The vloader project is then proposed as a possible solution to some of these inconveniences with a working proof of concept and examples to outline the potential of such new virtualization technique. By injecting specific code and libraries in the middle of the binary loading mechanism provided by the ELF standard, the vloader project can promote a streamlined and simplified approach to trace system calls. With the advantages outlined in the following paper, this method presents better performance and portability compared to the currently available ViewOS implementations. Furthermore, some of itsdisadvantages are also discussed, along with their possible solutions.
Resumo:
DNA is a fascinating biomolecule that is well known for its genetic role in living systems. The emerging area of DNA nanotechnology provides an alternative view that exploits unparallel self-assembly ability of DNA molecules for material use of DNA. Although many reports exist on the results of DNA self-assembling systems, still few of them focus on the in vitro study about the function of such DNA nanostructures in live cells. Due to this, there are still a limited research about the in vitro functionality of such designs. To address an aspect of this issue, we have designed, synthesized and characterized two multifunctional fluorescencent nanobiosensors by DNA self-assembling. Each structure was designed and implemented to be introduced in live cells in order to give information on their functioning in real-time. Computational tools were used in order to design a graphic model of two new DNA motifs and also to obtain the specific sequences to all the ssDNA molecules. By thermal self-assembly techniques we have successfully synthesized the structure and corroborate their formation by the PAGE technique. In addition, we have established the conditions to characterize their structural conformation change when they perform their sensor response. The sensing behavior was also accomplished by fluorescence spectroscopy techniques; FRET evaluation and fluorescence microscopy imaging. Providing the evidence about their adequate sensing performance outside and inside the cells detected in real-time. In a preliminary evaluation we have tried to show the in vitro functionality of our structures in different cancer cell lines with the ability to perform local sensing responses. Our findings suggest that DNA sensor nanostructures could serve as a platform to exploit further therapeutic achievements in live cells.