4 resultados para GAS SEPARATION EFFICIENCY
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In a world where the problem of energy resources, pollution and all aspects related to these issues become more and more dominant, a greater commitment is needed in the search for solutions. The goal of this project is to make a contribution to the research and development of new materials to reduce the environmental impact in some fields. First of all, we tried to synthesize and prepare an isatin-based membrane which has the potential for use in separating industrial gases. Furthermore, ion exchange membranes, specifically hydroxide exchange membranes (HEMs) derived from the same product can be developed for fuel cells (HEMFC) applications. These materials are essential for energy conversion and storage. The most difficult challenge is to guarantee their thermal stability and stability in corrosive environments such as alkali without losing efficiency. In recent years the poly- hydroxyalkylation catalysed with superacids, e.g. TFSA, has become increasingly studied. This reaction is exploited for the synthesis of the compounds of this thesis. After a preliminary optimization of the reaction conditions it was concluded that due to the rigidity and excessive reactivity of the system, it was not possible to obtain the isatin-based membrane to evaluate the gas separation properties. The synthesis of precursor materials for HEMs was successful by using 1-(4-bromobutyl)indoline-2,3-dione (BID) instead of isatin. A characterization of the obtained polymers was carried out using NMR, TGA and DSC analyses, and subsequently the membranes were functionalized with different ammonium-based cations. Unfortunately, this last step was not successful due to the appearance of side reactions. Future studies on the mechanism and kinetics of the reaction solve this obstacle.
Resumo:
This study investigates biomass and particulate matter also known as PM produced from the combustion of a domestic boiler powered by mais and how to separate PM from the stream of smoke output from the boiler using wet scrubber with structured packing. Sperimentations show the inefficiency of the separator used, so we provide an optimization of the structured packing changing geometric parameters as angle of the bend or thickness of the channels. In order to obtain a higher separation efficiency we remove the structured packinkg and introduce a packed bed composed of spheres of polyethylene with a diameter of 3 mm.
Resumo:
The present thesis focuses on the permebility analisys of Aquivion® 980 Perfluoro sulfonic acid (PFSA) polymer with particular reference to the influence of the equivalent weight (gram of polymer per molSO3H) on the permeation properties. Aquivion grade tested, indeed, were characterized by a lower equivalent weight ( 870 g/molSO3H against 980 of the present material) with respect to data present in the open literature. Permeability of different gases (CO2, N2, and CH4) was tested at different temperatures and different humidity, a parameter which greatly influences the gas transport in such hydrophilic material- Aquivion® swells consistently in humid conditions increasing its gas permeability of more than one order of magnitude with respect to values prevailing in dry conditions. Present data confirm such behavior being the permeability of all gases and vapors tested substantially increased in presence of water. Interestingly the increase in permeability results be similar for all the gases inspected, hence such enhanced permeation capability is not associated to a selectivity loss that happens in polymeric membranes. Although, the results, of CO2, are lower compared to those obtained with the different grades, with lower equivalent weight, of Aquivion, thus suggesting that an increase of this parameter is detrimental for both permeability and selectivity of the membranes with respect to CO2. This is likely related to the fact that a lower content of SO3H groups makes it difficult to have an interconnected water domain inside the membranes. A modeling approach was considered to describe the experimental data and to give a better insight into the observed behavior, unfortunately, it resulted not sensitive enough to catch the differences between the gas permeability in PSFAs with high and low equivalent weight. The latter were indeed usually contained within 10-20% which results to be the in the same range of model precision when used in a predictive way.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.