2 resultados para Frobenius norm
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.
Resumo:
L’obiettivo di questa tesi è quello di presentare, in maniera elementare ma esaustiva, una delle teorie più interessanti nell’ambito dell’analisi matematica: le equazioni differenziali, equazioni che legano una funzione (vista come incognita) alle sue derivate. Nel presentare la teoria delle equazioni differenziali, l’esposizione viene suddivisa in tre capitoli. Il primo ha il fine di presentare la teoria, introducendo le definizioni e i principali risultati, con particolare attenzione al problema di Cauchy, mentre nel secondo l’attenzione si focalizza su come le soluzioni di un sistema differenziale dipendano dai dati iniziali. Nel terzo capitolo la teoria viene generalizzata attraverso il Teorema di Frobenius. Infatti, così come la soluzione di un’equazione differenziale ordinaria permette di ricostruire una curva passante per un dato punto a partire dal suo campo di tangenti, analogamente il Teorema di Frobenius permette di ricostruire una sottovarietà liscia a partire da un sistema di spazi vettoriali tangenti.