4 resultados para Fractional Dirac operator
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.
Resumo:
Lo scopo della prima parte di questo elaborato è quello di mostrare come l'approccio geometrico, qui principalmente basato sull'algebra delle forme differenziali, possa semplificare la forma delle equazioni di Maxwell. Verificheremo che tutte le leggi dell'elettromagnetismo possono essere derivate da aspetti puramente geometrici e poi riconosciute come leggi fisiche imponendo le opportune restrizioni. Nella seconda parte trattiamo vari aspetti del monopolo magnetico. Prima lo introdurremo seguendo il percorso di Dirac, poi risolveremo analiticamente i problemi che esso presenta e alla fine inquadreremo i risultati che abbiamo ottenuto all'interno dell'algebra delle forme differenziali.
Resumo:
In questo lavoro si affronta l'argomento dei fermioni di Dirac nel grafene, si procederà compiendo nel primo capitolo un'analisi alla struttura reticolare del materiale per poi ricostruirne, sfruttando l'approssimazione di tigth-binding, le funzioni d'onda delle particelle che vivono negli orbitali del carbonio sistemate nella struttura reticolare e ricavarne grazie al passaggio in seconda quantizzazione l'Hamiltoniana. Nel secondo capitolo si ricavano brevemente le equazioni di Dirac e dopo una piccola nota storica si discutono le equazioni di Weyl arrivando all'Hamiltoniana dei fermioni a massa nulla mostrando la palese uguaglianza alla relazione di dispersione delle particelle del grafene. Nel terzo capitolo si commentano le evidenze sperimentali ottenute dalla ASPEC in cui si manifesta per le basse energie uno spettro lineare, dando così conferma alla teoria esposta nei capitoli precedenti.
Resumo:
Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.