2 resultados para Four wave mixing

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to represent the transport and fate of an oil slick at the sea surface is a formidable task. By using an accurate numerical representation of oil evolution and movement in seawater, the possibility to asses and reduce the oil-spill pollution risk can be greatly improved. The blowing of the wind on the sea surface generates ocean waves, which give rise to transport of pollutants by wave-induced velocities that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associated to a random gravity wave field is a function of the wave Energy Spectra that statistically fully describe it and that can be provided by a wave numerical model. Therefore, in order to perform an accurate numerical simulation of the oil motion in seawater, a coupling of the oil-spill model with a wave forecasting model is needed. In this Thesis work, the coupling of the MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical model has been performed and tested. In order to improve the knowledge of the wind-wave model and its numerical performances, a preliminary sensitivity study to different SWAN model configuration has been carried out. The SWAN model results have been compared with the ISPRA directional buoys located at Venezia, Ancona and Monopoli and the best model settings have been detected. Then, high resolution currents provided by a relocatable model (SURF) have been used to force both the wave and the oil-spill models and its coupling with the SWAN model has been tested. The trajectories of four drifters have been simulated by using JONSWAP parametric spectra or SWAN directional-frequency energy output spectra and results have been compared with the real paths traveled by the drifters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.