2 resultados para Forced oscillations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.
Resumo:
The surface of the Earth is subjected to vertical deformations caused by geophysical and geological processes which can be monitored by Global Positioning System (GPS) observations. The purpose of this work is to investigate GPS height time series to identify interannual signals affecting the Earth’s surface over the European and Mediterranean area, during the period 2001-2019. Thirty-six homogeneously distributed GPS stations were selected from the online dataset made available by the Nevada Geodetic Laboratory (NGL) on the basis of the length and quality of the data series. The Principal Component Analysis (PCA) is the technique applied to extract the main patterns of the space and time variability of the GPS Up coordinate. The time series were studied by means of a frequency analysis using a periodogram and the real-valued Morlet wavelet. The periodogram is used to identify the dominant frequencies and the spectral density of the investigated signals; the second one is applied to identify the signals in the time domain and the relevant periodicities. This study has identified, over European and Mediterranean area, the presence of interannual non-linear signals with a period of 2-to-4 years, possibly related to atmospheric and hydrological loading displacements and to climate phenomena, such as El Niño Southern Oscillation (ENSO). A clear signal with a period of about six years is present in the vertical component of the GPS time series, likely explainable by the gravitational coupling between the Earth’s mantle and the inner core. Moreover, signals with a period in the order of 8-9 years, might be explained by mantle-inner core gravity coupling and the cycle of the lunar perigee, and a signal of 18.6 years, likely associated to lunar nodal cycle, were identified through the wavelet spectrum. However, these last two signals need further confirmation because the present length of the GPS time series is still too short when compared to the periods involved.