2 resultados para Fluorine containing polymers
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
An investigation on the synthesis and properties of ferrocene-containing methacrylate monomer and polymer was carried out. Block copolymers of Ferrocenylmethyl Methacrylate with methyl, butil and esil methacrylate, were also prepared. The side-chain ferrocene-containing polymers and copolymers were prepared via atom transfer radical polymerization (ATRP). The glass transition temperature (Tg) values of the polymers and copolymers were measured by differential scan calorimetry (DSC).The thermal degradation behavior of copolymers was also studied and compared with the respective homopolymers. Cyclic voltammetry was employed to study the electrochemical properties. Preliminar electrochemical studies with a glassy carbon and Indium Tin Oxide electrodes modified with ferrocene-polymer conducted in aqueous and organic media are reported.
Resumo:
The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.