2 resultados para Flower-like structures
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
The work done is about the seismic analysis of an existing reinforced concrete structure that is equipped with a special bracing device. The main objective of the research is to provide a simple procedure that can be followed in order to design the lateral bracing system in such a way that the actual behavior of the structure matches the desired pre-defined objective curve. a great attention is devoted to the internal actions in the structural elements produced by the braces. The device used is called: Crescent shaped braces. This device is a special type of bracing because it has a banana-like geometry that allows the designer to have more control over the stiffness of the structure, especially under cyclic behavior, Unlike the conventional bracing that resists only through its axial stiffness. This device has been installed in a hospital in Italy. However, it has not been exposed to any ground motion so far. Different analysis methods, such as static pushover and dynamic time-history have been used in the analysis of the structure.